1. 简介 VGGNet 是牛津大学计算机视觉组(Visual Geometry Group)和 Google DeepMind 公司的研究员一起研发的深度卷积神经网络,其主要探索了卷积神经网络的深度与网络性能间的关系. 2. 模型拓扑 16-19层深的卷积神经网络: VGGNet 论文中全部使用了 3×3 的卷积核和 2×2的池化核, 反复堆叠 3×3 的小型卷积核和 2×2 的最大池化层: 3. VGGNet-16 主要分为 6 部分, 前五部分为卷积网络: 最后一段是全连接网络:…
Google Inception Net 首次出现在 ILSVRC 2014 的比赛中(和 VGGNet 同年),就以较大优势拔得头筹.那届比赛中的 Inception Net 一般被称为 Inception V1(version 1),其最大的优势在于控制 了参数量(也就控制了计算量)的同时,仍然能够获得非常好的分类性能 -- top-5 错误率 6.67%. Inception V1 降低餐数量的目的在于以下两点: 参数越多,模型越庞大,需要提供模型学习的数据量也就越大,而当前高质量的数据非…
AlexNet 为卷积神经网络和深度学习正名,以绝对优势拿下 ILSVRC 2012 年冠军,引起了学术界的极大关注,掀起了深度学习研究的热潮. AlexNet 在 ILSVRC 数据集上达到 16.4% 的错误率(需要设定 batch_size=1) models/alexnet_benchmark.py at master · tensorflow/models · GitHub,为一个 AlexNet 的测试基准程序. 0. 模型拓扑 在 main 函数中,不是使用的 ImageNet 中…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! LeNet / AlexNet / GoogLeNet / VGGNet/ ResNet 前言:这个系列文章将会从经典的卷积神经网络历史开始,然后逐个讲解卷积神经网络结构,代码实现和优化方向. THE HISTORY OF NEURAL NETWORKS http://dataconomy.com/2017/04/history-neural-networks/…
本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.AlexNet模型及其基本原理阐述 1.关于AlexNet 2012年,AlexKrizhevsky提出了深度卷积神经网络模型AlexNet,可以看作LeNet的一种更深更宽的版本.该模型包含了6亿3000万个连接,6000万个参数和65万个神经元,拥有5个卷积层,其中3个卷积层后面连接了最大池化层,最后还有3个全连接层.它将LeNet的思想得到更广泛的传…
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. 其中 文章 详解卷积神经网络(CNN)已经对卷积神经网络进行了详细的描述,这里为了学习MXNet的库,所以对经典的神经网络进行实现~加深学习印象,并且为以后的使用打下基础.其中参考的为Gluon社区提供的学习资料~ 1.简单LeNet的实现 def LeNet(): """ 较早的卷积神经网络 :…
卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01   |   In Machine Learning  |   9 Comments  |   14935  Views 概述 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的.CNN相较于传统的图像处理算法的优点之一在于,避免了对图像复杂的…
CNN的基本结构包括两层: 特征提取层:每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征.一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来: 特征映射层:网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等.特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性.此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数.卷积神经网络中的每一个卷积层都紧跟着一个用来求局部平均与二次提…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
激活函数Relu 最近几年卷积神经网络中,激活函数往往不选择sigmoid或tanh函数,而是选择relu函数.Relu函数的定义 $$f(x)= max(0,x)$$ Relu函数图像如下图所示: CNN示例 上图是一个CNN的示意图,一个卷积神经网络由若干卷积层.Pooling层.全连接层组成.你可以构建各种不同的卷积神经网络,它的常用架构模式为: INPUT -> [[CONV]*N -> POOL?]*M -> [FC]*K 也就是N个卷积层叠加,然后(可选)叠加一个Poolin…