前一阵子參加炼数成金的MapReduce培训,培训中的作业样例比較有代表性,用于解释问题再好只是了. 有一本国外的有关MR的教材,比較有用.点此下载. 一.MapReduce应用场景 MR能解决什么问题?一般来说,用的最多的应该是日志分析,海量数据排序处理.近期一段时间公司用MR来解决大量日志的离线并行分析问题. 二.MapReduce机制 对于不熟悉MR工作原理的同学,推荐大家先去看一篇博文:http://blog.csdn.net/athenaer/article/details/82039…
[前言:笔者将分上下篇文章进行阐述Spark和MapReduce的对比,首篇侧重于"宏观"上的对比,更多的是笔者总结的针对"相对于MapReduce我们为什么选择Spark"之类的问题的几个核心归纳点:次篇则从任务处理级别运用的并行机制/计算模型方面上对比,更多的是让大家对Spark为什么比MapReduce快有一个更深.更全面的认识.通过两篇文章的解读,希望帮助大家对Spark和MapReduce有一个更深入的了解,并且能够在遇到诸如"MapReduce…
前言 本文讲解Hadoop中的编程及计算模型MapReduce,并将给出在MapReduce模型下编程的基本套路. 模型架构 在Hadoop中,用于执行计算任务(MapReduce任务)的机器有两个角色:一个是JobTracker,一个是TaskTracker,前者用于管理和调度工作,后者用于执行工作. 一般来说,一个Hadoop集群由一个JobTracker和N个TaskTracker构成. 执行流程 每次计算任务都可以分为两个阶段,Map阶段和Reduce阶段. 其中,Map阶段接收一组键值…
MapReduce计算模型 MapReduce两个重要角色:JobTracker和TaskTracker. ​ MapReduce Job 每个任务初始化一个Job,没个Job划分为两个阶段:Map和Reduce阶段. Map函数接受一个<key, value>形式的输入,输出一个<key, value>形式的中间输出. Hadoop负责将所有的相同中间key值的value集合到一起传递给Reduce函数. Reduce函数接受一个<key, (list of value)&…
MapReduce 计算模型的优化涉及了方方面面的内容,但是主要集中在两个方面:一是计算性能方面的优化:二是I/O操作方面的优化.这其中,又包含六个方面的内容. 1.任务调度 任务调度是Hadoop中非常重要的一环,这个优化又涉及两个方面的内容.计算方面,Hadoop总会优先将任务分配给空闲的机器,使所有的任务能公平地分享系统资源.I/O方面.Hadoop会尽量将Map任务分配给InputSplit所在的机器,以减少网络I/O的消耗. 2.数据预处理与InputSplit的大小 MapReduc…
前言 本文讲解Hadoop中的编程及计算模型MapReduce,并将给出在MapReduce模型下编程的基本套路. 模型架构 在Hadoop中,用于执行计算任务(MapReduce任务)的机器有两个角色:一个是JobTracker,一个是TaskTracker,前者用于管理和调度工作,后者用于执行工作. 一般来说,一个Hadoop集群由一个JobTracker和N个TaskTracker构成. 执行流程 每次计算任务都可以分为两个阶段,Map阶段和Reduce阶段. 其中,Map阶段接收一组键值…
之前写过关于Hadoop方面的MapReduce框架的文章MapReduce框架Hadoop应用(一) 介绍了MapReduce的模型和Hadoop下的MapReduce框架,此文章将进一步介绍mapreduce计算模型能用于解决什么问题及有什么巧妙优化. MapReduce到底解决什么问题? MapReduce准确的说,它不是一个产品,而是一种解决问题的思路,能够用分治策略来解决问题.例如:网页抓取.日志处理.索引倒排.查询请求汇总等等问题.通过分治法,将一个大规模的问题,分解成多个小规模的问…
前言 项目中运用了Spark进行Kafka集群下面的数据消费,本文作为一个Spark入门文章/笔记,介绍下Spark基本概念以及MapReduce模型 Spark的基本概念: 官网: http://spark.apache.org/ 给出了如下概念 Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark™是用于大规模数据处理的统一分析引擎.当然,它也适用于AI人工智能. A…
PV计算模型 现有的PV计算公式是: 每台服务器每秒平均PV量 =( (总PV*80%)/(24*60*60*40%))/服务器数量 =2*(总PV)/* (24*60*60) /服务器数量 通过定积分求整个分布图的面积,然后求出最高值附近范围内的定积分,可以求得占据了80%的pv量的总时间.根据这个数据,得出计算pv的公式变成: 每台服务器每秒平均PV量= ( (80%*总PV)/(24*60*60*(9/24)))/服务器数量 即 每台服务器每秒平均PV量=2.14*(总PV)/* (24*…
[TOC] Spark计算模型 Spark程序模型 一个经典的示例模型 SparkContext中的textFile函数从HDFS读取日志文件,输出变量file var file = sc.textFile("hdfs://***") RDD中的filter函数过滤带有'ERROR'的行,输出errors(一个RDD) var errors = file.filter(line=>line.contains("ERROR")) RDD中的count函数返回&q…
进入更深的层次:模型构造.参数访问.自定义层和使用 GPU. 模型构建 在多层感知机的实现中,我们首先构造 Sequential 实例,然后依次添加两个全连接层.其中第一层的输出大小为 256,即隐藏层单元个数是 256:第二层的输出大小为 10,即输出层单元个数是 10. 我们之前都是用了 Sequential 类来构造模型.这里我们另外一种基于 Block 类的模型构造方法,它让构造模型更加灵活,也将让你能更好的理解 Sequential 的运行机制. 继承 Block 类来构造模型 Blo…
Hadoop的MapReduce的Map Task和Reduce Task都是进程级别的:而Spark Task则是基于线程模型的. 多进程模型和多线程模型 所谓的多进程模型和多线程模型,指的是同一个节点上多个任务的运行模式.无论是MapReduce和Spark,整体上看都是多进程的:MapReduce应用程序是由多个独立的Task进程组成的:Spark应用程序的运行环境是由多个独立的Executor进程(每个应用程序使用一个Executor进程)构建的临时资源池构成的. 多进程模型便于细粒度控…
TensorFlow是一个通过计算图的形式来表述计算的编程系统.其中的Tnesor,代表它的数据结构,而Flow代表它的计算模型.TensorFlow中的每一个计算都是计算图上的一个节点,而节点之间的线描述了计算之间的依赖关系. 在TensorFlow程序中,系统会自动维护一个默认的计算图,通过tf.get_default_gragh函数可以获取当前默认的计算图. 除了默认的计算图,TensorFlow也支持通过tf.Graph函数来生成新的计算图.不同的计算图上的张量和运算不会共享.如下示例:…
一文详解LDA主题模型 - 达观数据 - SegmentFault 思否 https://segmentfault.com/a/1190000012215533 SELECT COUNT(1) FROM myu_oriv_t; #CREATE TABLE myu_oriv_t AS SELECT * FROM (SELECT t.aid,t.label,o.* FROM myt t LEFT JOIN myu_oriv o ON t.uid=o.uid) AS t; SELECT DISTINC…
不同的λ(0,1,10,100)值对regularization的影响\ 预测新的值和计算模型的精度 %% ============= Part 2: Regularization and Accuracies =============% Optional Exercise:% In this part, you will get to try different values of lambda and % see how regularization affects the decisio…
求得θ值后用模型来预测 / 计算模型的精度  ex2.m部分程序 %% ============== Part 4: Predict and Accuracies ==============% After learning the parameters, you'll like to use it to predict the outcomes% on unseen data. In this part, you will use the logistic regression model%…
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg # Youku video tutorial: http://i.youku.com/pythontutorial """ Please note, this code…
OSI 七层模型通过七个层次化的结构模型使不同的系统不同的网络之间实现可靠的通讯,因此其最基本的功能就是帮助不同类型的主机实现传输数据 . 完毕中继功能的节点通常称为中继系统.在OSI七层模型中,处于不同层的中继系统具有不同的名称. 一个设备工作在哪一层,关键看它工作时利用哪一层的数据头部信息.网桥工作时,是以MAC头部来决定转发port的,因此显然它是数据链路层的设备. 详细说: 物理层:网卡,网线,集线器,中继器,调制解调器 数据链路层:网桥,交换机 网络层:路由器 网关工作在第四层传输层及…
http://tech.it168.com/a2012/0401/1333/000001333287.shtml 最近很多人都在讨论Spark这个貌似通用的分布式计算模型,国内很多机器学习相关工作者都在研究和使用它. Spark是一个通用的并行计算框架,由UCBerkeley的AMP实验室开发. 那么Spark和Hadoop有什么不同呢? 1.Spark的中间数据放到内存中,对于迭代运算效率比较高. Spark aims to extend MapReduce for iterative alg…
RDD弹性分布式数据集 RDD概述 RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将数据缓存在内存中,后续的查询能够重用这些数据,这极大地提升了查询速度. Resilient:RDD中的数据可以存储在内存中或者磁盘中. Distributed:RDD中的数据是分布式存储…
1.学习单步的RNN:RNNCell.BasicRNNCell.BasicLSTMCell.LSTMCell.GRUCell (1)RNNCell 如果要学习TensorFlow中的RNN,第一站应该就是去了解“RNNCell”,它是TensorFlow中实现RNN的基本单元,每个RNNCell都有一个call方法,使用方式是:(output, next_state) = call(input, state). 借助图片来说可能更容易理解.假设我们有一个初始状态h0,还有输入x1,调用call(…
Bag-of-words model (BoW model) 最早出现在NLP和IR领域. 该模型忽略掉文本的语法和语序, 用一组无序的单词(words)来表达一段文字或一个文档. 近年来, BoW模型被广泛应用于计算机视觉中. 与应用于文本的BoW类比, 图像的特征(feature)被当作单词(Word). 引子: 应用于文本的BoW model Wikipedia[1]上给出了如下例子: John likes to watch movies. Mary likes too. John als…
在Spark集群背后,有一个非常重要的分布式数据架构,即弹性分布式数据集(Resilient Distributed DataSet,RDD),它是逻辑集中的实体,在集群中的多台集群上进行数据分区.通过对多台机器上不同RDD分区的控制,能够减少机器之间的数据重排(Data Shuffle).Spark提供了“partitionBy”运算符,能够通过集群中多台机器之间对原始RDD进行数据再分配来创建一个新的RDD.RDD是Spark的核心数据结构,通过RDD的依赖关系形成Spark的调度顺序.通过…
关于mapreduce程序运行在yarn上时内存的分配一直是一个让我蒙圈的事情,单独查任何一个资料都不能很好的理解透彻.于是,最近查了大量的资料,综合各种解释,终于理解到了一个比较清晰的程度,在这里将理解的东西做一个简单的记录,以备忘却.首先,先将关于mapreduce和yarn关于内存分配的参数粘贴上:yarn.scheduler.minimum-allocation-mbyarn.scheduler.maximum-allocation-mbyarn.nodemanager.resource…
第一步,先计算需要计算概率的词频,单词种类数,类别单词总数(类别均是按照文件夹名区分)(基础数据以及分词了,每个单词一行,以及预处理好) package org.lukey.hadoop.classifyBayes; import java.io.IOException; import java.net.URI; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.uti…
转载自:http://blog.csdn.net/john_xyz/article/details/69053626 Tensorflow是一个通过计算图的形式来表述计算的编程系统,计算图也叫数据流图,可以把计算图看做是一种有向图,Tensorflow中的每一个计算都是计算图上的一个节点,而节点之间的边描述了计算之间的依赖关系. 计算图的使用 在tensorflow程序中,系统会维护一个默认的计算图,通过tf.get_default_graph()函数可以获取当前默认的计算图,为了向默认的计算图…
我们将深入讲解模型参数的访问和初始化,以及如何在多个层之间共享同一份参数. 之前我们一直在使用默认的初始函数,net.initialize(). from mxnet import init, nd from mxnet.gluon import nn net = nn.Sequential() net.add(nn.Dense(256, activation='relu')) net.add(nn.Dense(10)) net.initialize() x = nd.random.unifor…
作者:wjmishuai 出处: http://blog.csdn.net/wjmishuai/article/details/50890214 原始数据是28*28 1:数据层: layer { name: "mnist"//数据层的名字是mnist type: "Data"//这个层的类型是data top: "data"//产生两个blob,一个是data blob top: "label"//一个是lable blob…
这是参照<机器学习实战>中第15章“大数据与MapReduce”的内容,因为作者写作时hadoop版本和现在的版本相差很大,所以在Hadoop上运行python写的MapReduce程序时出现了很多问题,因此希望能够分享一些过程中的经验,但愿大家能够避开同样的坑.文章内容分为以下几个部分:(本文的代码和用到的数据集可以在这里下载) 1.代码分析 2.运行步骤 3.问题解决 1.代码分析 问题描述:在一个海量数据上分布式计算均值和方差的MapReduce作业. 设有一组数字,这组数字的均值和方差…
一.创建Model模型 Extjs4.10提供了两种方法来创建Model模型,也就是创建类 方法一: Ext.define('person',{              extend:'Ext.data.Model'     //必须继承类           fields:[                     {name:'name',type:'auto'},                       {name:'age',type:'int'},                …