先记录一下一些概念和定理 同余:给定整数a,b,c,若用c不停的去除a和b最终所得余数一样,则称a和b对模c同余,记做a≡b (mod c),同余满足自反性,对称性,传递性 定理1: 若a≡b (mod c),对某个整数k有 a+k≡b+k (mod c) a-k≡b-k (mod c)  ak≡bk (mod c)  定理2: 若a≡b (mod c),d≡e (mod c),有 ax+dy≡bx+ey (mod c) ,x,y为任意整数,即同余式可以相加 ad≡be (mod c) ,即同余…
ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯)   中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 7个7个分剩2个 问这个物品有多少个 解这题,我们需要构造一个答案 我们需要构造这个答案 5*7*inv(5*7,  3) % 3  =  1 3*7*inv(3*7,  5) % 5  =  1 3*5*inv(3*5,  7) % 7  =  1 这3个式子对不对,别告诉我逆元你忘了(*´∇`…
洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d|N}C(N,d)}(\mod999911659)\) 乍一看,指数这么大,要怎么处理好呢?上费马小定理. 平时用费马小定理求逆元用多了,\(a^{p-2}\equiv inv(a)(\mod p)\),搞得蒟蒻差点忘了它原本的样子\(a^{p-1}=1(\mod p)\),那原式的指数\(\sum…
我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的相关定理).扩展欧几里德常用在求解模线性方程及方程组中. ①:裴蜀定理: 裴蜀定理\((Bezouts identity)\)是代数几何中一个定理,其内容是若设a,b是整数,则存在整数x,y,使得ax+by=gcd(a,b),(a,b)代表最大公因数,则设a,b是不全为零的整数,则存在整数x,y,使…
题目:http://community.topcoder.com/stat?c=problem_statement&pm=12083 这道题还是挺耐想的(至少对我来说是这样).开始时我只会60%的算法,在借鉴了巨神zhx的代码并查阅了官方题解后才终于懂了点了. 两两互质的情形 首先,考虑简化的情形:若模板i的长度为li,我们加上限制,即所有模板的长度两两互质. 假设当前位置x对应第i个模板的位置为ai,当且仅当,而li是两两互质的,由中国剩余定理,x在范围内有唯一解.这样,这个问题就被秒掉了.…
一.不定方程 要求逆元,首先要知道什么是不定方程. 已知a,b,c,求解x,y,形如ax + by = c 的方程就是不定方程. 不定方程有两种解的情况: 1.无解 2.存在且有无限的解 那么,如何判断解的情况呢? 这时候,只需要拿出gcd就可以了, 若gcd(a,b) | c,则方程存在解,为什么呢 因为我们要使用扩展欧几里得来求不定方程,我们都知道欧几里得是求 ax + by = gcd(a,b) 中的 x,y的,因此如果我们要把c代换成gcd(a,b)的话,c一定是gcd(a,b)的整数倍…
E - Biorhythms Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status Description Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the…
一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K.例如,K % 2 = 1, K % 3 = 2, K % 5 = 3.符合条件的最小的K = 23.   Input 第1行:1个数N表示后面输入的质数及模的数量.(2 <= N <= 10) 第2 - N + 1行,每行2个数P和M,中间用空格分隔,P是质数,M是K % P的结果.(2 <= P <= 100, 0 <= K < P) Output 输出符合条件的最小的K.数据中所有K均小于10^9.…
给定2n个整数a1,a2,…,ana1,a2,…,an和m1,m2,…,mnm1,m2,…,mn,求一个最小的整数x,满足∀i∈[1,n],x≡mi(mod ai)∀i∈[1,n],x≡mi(mod ai). 输入格式 第1行包含整数n. 第2..n行:每i+1行包含两个整数aiai和mimi,数之间用空格隔开. 输出格式 输出整数x,如果x不存在,则输出-1. 数据范围 1≤ai≤231−11≤ai≤231−1,0≤mi<ai0≤mi<ai 输入样例: 2 8 7 11 9 输出样例:31…
中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 7个7个分剩2个 问这个物品有多少个 解这题,我们需要构造一个答案 我们需要构造这个答案 5*7*inv(5*7,  3) % 3  =  1 3*7*inv(3*7,  5) % 5  =  1 3*5*inv(3*5,  7) % 7  =  1 这3个式子对不对,别告诉我逆元你忘了(*´∇`*),忘了的人请翻阅前几章复习 然后两边同乘你需要的数 2 * 5*7*inv(5*…