基于Keras实现mnist-官方例子理解】的更多相关文章

前言 久闻keras大名,最近正好实训,借着这个机会好好学一下. 首先推荐一个API,可能稍微有点旧,但是写的是真的好 https://keras-cn.readthedocs.io/en/latest/ 还有一个tensorflow的API https://www.w3cschool.cn/tensorflow_python/? 还有强烈推荐使用vscode+anaconda 配置环境 环境 安装anaconda和vscode,在conda中新建keras的环境. conda create -…
这段话放在前面:之前一种用的Pytorch,用着还挺爽,感觉挺方便的,但是在最近文献的时候,很多实验都是基于Google 的Keras的,所以抽空学了下Keras,学了之后才发现Keras相比Pytorch而言,基于keras来写神经网络的话太方便,因为Keras高度的封装性,所以基于Keras来搭建神经网络很简单,在Keras下,可以用两种两种方法来搭建网络模型,分别是Sequential()与Model(),对于网络结构简单,层次较少的模型使用sequential方法较好,只需不断地mode…
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识别(二)--入门篇 基于tensorflow的MNIST手写数字识别(三)--神经网络篇 一.本文的意义 因为谷歌官方其实已经写了MNIST入门和深入两篇教程了,那我写这些文章又是为什么呢,只是抄袭?那倒并不是,更准确的说应该是笔记吧,然后用更通俗的语言来解释,并且补充更多,官方文章中没有详细展开的…
基于Caffe的MNIST数据集训练与测试 原创:转载请注明https://www.cnblogs.com/xiaoboge/p/10688926.html  摘要 在前面的博文中,我详细介绍了Caffe的网络结构和求解文件,还介绍了如何制作LMDB和Hdf5数据源文件.但是我们还没有完整的介绍过如何在Caffe框架下去训练一个神经网络模型,在本篇博文中我将从最经典.简单的卷积神经网络Lenet(CNN的开端)和最简单的数据集MNIST(手写数字)出发,详细介绍整个网络的训练与测试过程. 1. …
[深度应用]·首届中国心电智能大赛初赛开源Baseline(基于Keras val_acc: 0.88) 个人主页--> https://xiaosongshine.github.io/ 项目github地址:https://github.com/xiaosongshine/preliminary_challenge_baseline_keras (应比赛组委会要求,Github暂时关闭,比赛结束后公开,主要代码都在下方) 大赛简介 为响应国家健康中国战略,推送健康医疗和大数据的融合发展的政策,…
目录 基于 Keras 用 LSTM 网络做时间序列预测 问题描述 长短记忆网络 LSTM 网络回归 LSTM 网络回归结合窗口法 基于时间步的 LSTM 网络回归 在批量训练之间保持 LSTM 的记忆 在批量训练中堆叠 LSTM 网络 总结 扩展阅读 本文主要参考了 Jason Brownlee 的博文 Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras 原文使用 python 实现模型…
目录 基于 Keras 用深度学习预测时间序列 问题描述 多层感知机回归 多层感知机回归结合"窗口法" 改进方向 扩展阅读 本文主要参考了 Jason Brownlee 的博文 Time Series Prediction With Deep Learning in Keras 原文使用 python 实现模型,这里是用 R 基于 Keras 用深度学习预测时间序列 时间序列预测一直以来是机器学习中的一个难题. 在本篇文章中,将介绍如何在 R 中使用 keras 深度学习包构建神经网络…
基于TensorRT的BERT实时自然语言理解(下) BERT Inference with TensorRT 请参阅Python脚本bert_inference.py还有详细的Jupyter notebook BERT_TRT.ipynb在sample文件夹中进行推理过程的逐步描述和演练.在本节中,让我们回顾几个关键参数和概念,以便使用TensorRT进行推理. BERT(更具体地说是编码器层)使用以下参数来控制其操作: Batch size Sequence Length Number of…
基于TensorRT的BERT实时自然语言理解(上) 大规模语言模型(LSLMs)如BERT.GPT-2和XL-Net为许多自然语言理解(NLU)任务带来了最先进的精准飞跃.自2018年10月发布以来,BERT1(来自Transformer的双向编码器表示)仍然是最流行的语言模型之一,并且在编写时仍能提供最先进的精准. BERT为NLU任务的准确性提供了一个飞跃,使得基于语言的高质量服务在许多行业的公司都能达到.要在生产中使用模型,除了精准之外,还需要考虑延迟等因素,这些因素会影响最终用户对服务…
===================================================== 最简单的基于FFmpeg的移动端例子系列文章列表: 最简单的基于FFmpeg的移动端例子:Android HelloWorld 最简单的基于FFmpeg的移动端例子:Android 视频解码器 最简单的基于FFmpeg的移动端例子:Android 视频解码器-单个库版 最简单的基于FFmpeg的移动端例子:Android 推流器 最简单的基于FFmpeg的移动端例子:Android 视频转…