【素数判定/筛法进阶算法】-C++】的更多相关文章

今天我们来谈一谈素数的判定/筛法. 对于每一个OIer来说,在漫长的练习过程中,素数不可能不在我们的眼中出现,那么判定/筛素数也是每一个OIer应该掌握的操作,那么我们今天来分享几种从暴力到高效的判定法/筛法. 弱智的譬如从1枚举到n或者是枚举的\(\sqrt{n}\)的算法就不讲了. 1.欧拉筛 欧拉筛是最基本的一种线性筛法,预处理完成之后可以O(1)查询,适合于查询次数多,范围不大的情况. 基本思想:每个合数只让其最大因数(或最小质因数)标记. 为了保证这一点,我们开一个prime数组,把检…
#include<iostream> #include<cstdio> #include<ctime> #include<string.h> #include<stdlib.h> #define LL long long using namespace std; const int S=20;//随机算法判定次数,S越大,判错概率越小 LL ans; //给定一个数,判断是否是素数(常用long long大数) LL mult_mod(LL a,…
梅森素数 定义: if m是一个正整数 and 2^m-1是一个素数 then m是素数 if m是一个正整数 and m是一个素数 then M(m)=2^m-1被称为第m个梅森数 if p是一个素数 and M(p)是一个素数 then M(p)被称为梅森素数 Lucas-Lehmer判定法:判定一个梅森数是否是梅森素数 设p是素数,第p个梅森数为M(p)为2^p-1,r1 = 4,对于k >= 2 r(k) = r(k+1)^2-2(modM(p)), 0 <= r(k) <= M…
公钥密码之RSA密码算法大素数判定:Miller-Rabin判定法! 先存档再说,以后实验报告还得打印上交. Miller-Rabin大素数判定对于学算法的人来讲不是什么难事,主要了解其原理. 先来灌输一下费马小定理:若p为素数,a是正整数且gcd(a,p)=1,则a^(p-1)%p=1.信息安全上俗称同余.本人时常将费马小定理与欧拉定理搞混淆,不过真的很类似.这里既是利用费马小定理来判定素数的. 当然了,费马小定理对于已知素数肯定是适用的,但不免存在一些伪素数也符合这个性质,所以我们需要随机数…
C - Prime number or not Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice FZU 1649 Description Your task is simple.Give you a number N, you should judge whether N is a prime number or not. Input There…
素数判定Miller_Rabin算法详解: http://blog.csdn.net/maxichu/article/details/45458569 大数因数分解Pollard_rho算法详解: http://blog.csdn.net/maxichu/article/details/45459533 然后是参考了kuangbin的模板: http://www.cnblogs.com/kuangbin/archive/2012/08/19/2646396.html 模板如下: //快速乘 (a…
转载自:http://www.dxmtb.com/blog/miller-rabbin/ 普通的素数测试我们有O(√ n)的试除算法.事实上,我们有O(slog³n)的算法. 定理一:假如p是质数,且(a,p)=1,那么a^(p-1)≡1(mod p).即假如p是质数,且a,p互质,那么a的(p-1)次方除以p的余数恒等于1.(费马小定理) 该定理的逆命题是不一定成立的,但是令人可喜的是大多数情况是成立的. 于是我们就得到了一个定理的直接应用,对于待验证的数p,我们不断取a∈[1,p-1]且a∈…
//****************************************************************// Miller_Rabin 算法进行素数测试//速度快,而且可以判断 <2^63的数//****************************************************************const int S=20;//随机算法判定次数,S越大,判错概率越小 //计算 (a*b)%c.   a,b都是long long的数,直接相乘…
目录 一.实现原理 二.应用 判断一个正整数是否为素数 三.小结 一.实现原理 我们以前都是怎么判断素数的呢: 试除法: 若一个正整数N为合数,则存在一个能整除N的数k,其中\(2\leqslant k \leqslant \sqrt N\). 具体实施如下: inline int is_prime(int n){ if(n<2) return 0; for(int i=2;i<=sqrt(n);i++){ if(n%i==0) return 0; } return 1; } 这种方法的时间复…
素性测试是数论题中比较常用的一个技巧.它可以很基础,也可以很高级(哲学).这次主要要介绍一下有关素数判断的奇技淫巧 素数的判断主要分为两种:范围筛选型&&单个判断型 我们先从范围筛选型这种常用的开始讲起,这里采用模板题Luogu P3383 [模板]线性筛素数来进行测试 1.埃氏筛 这是最常用的筛法了,思路也很简单:任何一个素数的倍数都是合数 然后我们O(n)扫一遍,同时筛去素数的倍数 但是有一些数如6,会被2和3都筛去一次,就造成了效率上的浪费,所以复杂度经证明为**O(n log lo…