Principal components analysis 这一讲,我们简单介绍Principal Components Analysis(PCA),这个方法可以用来确定特征空间的子空间,用一种更加紧凑的方式(更少的维数)来表示原来的特征空间.假设我们有一组训练集{x(i);i=1,...m},含有m个训练样本,每一个训练样本x(i)∈Rn,其中(n≪m),每一个n维的训练 样本意味着有n个属性,一般来说,这n个属性里面,会有很多是存在一定相关性的,也就是很多属性是冗余的,这就为特征的降维提供了…