使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预测(3)-绘制数据的分布 4.使用sklearn进行数据挖掘-房价预测(4)-数据预处理 5.使用sklearn进行数据挖掘-房价预测(5)-训练模型 6.使用sklearn进行数据挖掘-房价预测(6)-模型调优 可视化数据 目前我们只是大概了解了数据的类型,以及对数据集进行了划分,下面我们要对数据…
在使用机器算法之前,我们先把数据做下预处理,先把特征和标签拆分出来 housing = strat_train_set.drop("median_house_value",axis=1) #原始数据集并未发生改变 housing_labels=strat_train_set["median_house_value"].copy() 数据清洗 大多数机器学习算法是不能在有缺失值的数据集上面运行的,而本数据集特征total_bedrooms是存在数据缺失现象的,所以就需…
通过上一节的探索,我们会得到几个相对比较满意的模型,本节我们就对模型进行调优 网格搜索 列举出参数组合,直到找到比较满意的参数组合,这是一种调优方法,当然如果手动选择并一一进行实验这是一个十分繁琐的工作,sklearn提供了GridSearch-网格搜索方法,我们只需要将每一个参数的取值告诉它,网格搜索将使用交叉验证方法对所有情况进行验证,并返回结果最好的组合. from sklearn.model_selection import GridSearchCV param_grid = [ # 1…
使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预测(3)-绘制数据的分布 4.使用sklearn进行数据挖掘-房价预测(4)-数据预处理 5.使用sklearn进行数据挖掘-房价预测(5)-训练模型 6.使用sklearn进行数据挖掘-房价预测(6)-模型调优 前言 sklearn是比较流行的机器学习工具包,想必很多人都或多或少使用过,但完整的去…
使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预测(3)-绘制数据的分布 4.使用sklearn进行数据挖掘-房价预测(4)-数据预处理 5.使用sklearn进行数据挖掘-房价预测(5)-训练模型 6.使用sklearn进行数据挖掘-房价预测(6)-模型调优 上一节我们对数据集进行了了解,知道了数据集大小.特征个数及类型和数据分布等信息.做数据…
使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预测(3)-绘制数据的分布 4.使用sklearn进行数据挖掘-房价预测(4)-数据预处理 5.使用sklearn进行数据挖掘-房价预测(5)-训练模型 6.使用sklearn进行数据挖掘-房价预测(6)-模型调优 在前几节,我们先对数据进行了解,然后又详细介绍了数据集划分的方法,为了帮助我们更好的了…
> 以下内容是我在学习https://blog.csdn.net/mingxiaod/article/details/85938251 教程时遇到不懂的问题自己查询并理解的笔记,由于sklearn版本更迭改动了原作者的代码,如有理解偏差欢迎指正. 1. np.linspace np.linspace(1,10) 在numpy中生成一个等差数列,可以加三个参数,np.linspace(1,10,10)在是两个参数时默认生成五十个数字的等差数列,第一第二哥数字分别代表数列的开头和结尾,如果是三哥参数…
第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模型,并检测模型好坏,并图形化显示检查结果. 4.  一元多项式回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 代码: #导入boston房价数据集 from sklearn.datasets import load_boston import pandas as pd boston =…
最近学人工智能,讲到了Kaggle上的一个竞赛任务,Ames房价预测.本文将描述一下数据预处理和特征工程所进行的操作,具体代码Click Me. 原始数据集共有特征81个,数值型特征38个,非数值型特征43个.有很多缺失值. 1.离群点检测 以GrLivArea(地上面积)和SalePrice(房价)为自变量和因变量,得到如下散点图: 从上图中可以看出有2个极端的离群点在图的右下角(面积很大,但价格很低).该数据集的提供者建议移除面积大于4000 square feet的数据点(这样就去掉了4个…
目录 波士顿房价预测 导入模块 获取数据 打印数据 特征选择 散点图矩阵 关联矩阵 训练模型 可视化 波士顿房价预测 导入模块 import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from matplotlib.font_manager import FontProperties from sklearn.linear_model import LinearReg…
机器学习入门项目分享 - 波士顿房价预测 该分享源于Udacity机器学习进阶中的一个mini作业项目,用于入门非常合适,刨除了繁琐的部分,保留了最关键.基本的步骤,能够对机器学习基本流程有一个最清晰的认识: 项目描述 利用马萨诸塞州波士顿郊区的房屋信息数据训练和测试一个模型,并对模型的性能和预测能力进行测试: 项目分析 数据集字段解释: RM: 住宅平均房间数量: LSTAT: 区域中被认为是低收入阶层的比率: PTRATIO: 镇上学生与教师数量比例: MEDV: 房屋的中值价格(目标特征,…
目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术2 并行处理 2.1 整体并行处理 2.2 部分并行处理3 流水线处理4 自动化调参5 持久化6 回顾7 总结8 参考资料 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 数据挖掘通常包括数据采集,数据分析,特征工程,训练模型,模型评估等步骤.使用sklearn工具可以方便地进行特征工程和模型训练工作,在<使用sklearn做单机特征工程>中,我们最后留下了一些疑问:特征处理类都有三…
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术2 并行处理 2.1 整体并行处理 2.2 部分并行…
Kaggle(一) 房价预测 (随机森林.岭回归.集成学习)  项目介绍:通过79个解释变量描述爱荷华州艾姆斯的住宅的各个方面,然后通过这些变量训练模型, 来预测房价.   kaggle项目链接:https://www.kaggle.com/c/house-prices-advanced-regression-techniques 数据描述: train.csv - 训练集 test.csv - 测试集 一.加载数据 #加载必要库 import pandas as pd import numpy…
今天看了个新闻,说是中国社会科学院城市发展与环境研究所及社会科学文献出版社共同发布<房地产蓝皮书:中国房地产发展报告No.16(2019)>指出房价上涨7.6%,看得我都坐不住了,这房价上涨什么时候是个头啊.为了让自己以后租得起房,我还是好好努力吧.于是我打开了Kaggle,准备上手第一道题,正巧发现有个房价预测,可能这是命运的安排吧...... 一.下载数据 进入到 kaggle 后要先登录,需要注意的是,注册的时候有一个验证,要FQ才会显示验证信息.    下载好数据之后,大致看一下数据的…
目录 RANSAC算法线性回归(波斯顿房价预测) 一.RANSAC算法流程 二.导入模块 三.获取数据 四.训练模型 五.可视化 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ RANSAC算法线性回归(波斯顿房价预测) 虽然普通线性回归预测结果总体而言还是挺不错的,但是从数据上可以看出数据集中有较多的离群值,因此本节将使用RANSAC算法针对离群值做处理,即根据数据…
Python——决策树实战:california房价预测 编译环境:Anaconda.Jupyter Notebook 首先,导入模块: import pandas as pd import matplotlib.pyplot as plt %matplotlib inline 接下来导入数据集: from sklearn.datasets.california_housing import fetch_california_housing housing = fetch_california_…
pandas:简单的房价预测实例 我们使用pandas等工具,对于给出的.csv文件进行处理,完成要求的几个Task. 利用sklearn的线性回归,对于房价进行简单的预测. 所有的要求,数据集等文件,请到我的GitHub仓库自行下载:github.com/rongyupan/HousePricePred 如果你是pandas这类数据分析工具的新手,那这个项目很适合你.因为这个项目只需要用到最基本,最简单的操作. 数据集描述 transactions.csv数据集是我们的主要数据集:agents…
波士顿房价预测 Boston housing 这是一个波士顿房价预测的一个实战,上一次的Titantic是生存预测,其实本质上是一个分类问题,就是根据数据分为1或为0,这次的波士顿房价预测更像是预测一个连续值,当然这也是一个非常经典的机器学习案例Boston housing 如果想了解更多的知识,可以去我的机器学习之路 The Road To Machine Learning通道 @ 目录 活动背景 数据介绍 详细代码解释 导入Python Packages 读入数据 Read-In Data…
  基于房价数据,在python中训练得到一个线性回归的模型,在JavaWeb中加载模型完成房价预测的功能. 一. 训练.保存模型 工具:PyCharm-2017.Python-39.sklearn2pmml-0.76.1. 1.训练数据house_price.csv No square_feet price 1 150 6450 2 200 7450 3 250 8450 4 300 9450 5 350 11450 6 400 15450 7 600 18450 2.训练.保存模型 impo…
前言 我们使用深度学习网络实现波士顿房价预测,深度学习的目的就是寻找一个合适的函数输出我们想要的结果.深度学习实际上是机器学习领域中一个研究方向,深度学习的目标是让机器能够像人一样具有分析学习的能力,能够识别文字.图像.声音等数据.我认为深度学习与机器学习最主要的区别就是神经元. 深度学习中重要内容 建立模型--神经元 基本构造 一个神经元对应一组权重w,a代表输入,我们把输入与权重相乘再相加,再加上偏置b,最后通过激活函得到对应的输出. 我们不看激活函数,只看前面的部分会发现其实就是一个线性函…
数据集 house.csv 数据集概览 代码 package org.apache.spark.examples.examplesforml import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.feature.VectorAssembler import org.apache.spark.ml.regression.{IsotonicRegression, LinearRe…
kaggle竞赛 获取和读取数据集 数据预处理 找出所有数值型的特征,然后标准化 处理离散值特征 转化为DNArray后续训练 训练模型 k折交叉验证 预测样本,并提交结果 kaggle竞赛 本节将动手操作实践一个kaggle比赛,房价预测. 可以先将未经优化的数据的预处理,模型的设计和超参的选择,可以动手操作,观察实现的过程以及结果, 获取和读取数据集 比赛的数据分为训练数据集和测试数据集.两个数据集都包括每栋房子的特征,如阶段类型,建造年份,房顶类型,地下室状况等特征值.这些特征值有连续的数…
梯度消失.梯度爆炸以及Kaggle房价预测 梯度消失和梯度爆炸 考虑到环境因素的其他问题 Kaggle房价预测 梯度消失和梯度爆炸 深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion). 当神经网络的层数较多时,模型的数值稳定性容易变差. 假设一个层数为\(L\)的多层感知机的第\(l\)层\(\boldsymbol{H}^{(l)}\)的权重参数为\(\boldsymbol{W}^{(l)}\),输出层\(\boldsymbol{H}^{(L)}\)的权重参…
第8章 预测数值型数据:回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=default"></script> 回归(Regression) 概述 我们前边提到的分类的目标变量是标称型数据,而回归则是对连续型的数据做出处理,回归的目的是预测数值型数据的目标值. 回归 场景 回归的目的是预测数值型的目标值.…
转载:http://www.jb51.net/article/118936.htm 本篇文章主要介绍了Python使用plotly绘制数据图表的方法,实例分析了plotly绘制的技巧. 导语:使用 python-plotly 模块来进行压测数据的绘制,并且生成静态 html 页面结果展示. 不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Excel处理压测数据并绘制数据可视化视图,但这样不能很方便的使用web页面进行数据展示.本文将介绍使用python-plotly模块…
5.4 绘制数据图 参考视频: 5 - 4 - Plotting Data (10 min) 5.4.1 绘制曲线 1.画一个sin曲线 >> t = [:0.01:0.98]; >> y1 = sin( * pi * * t); >> plot(t,y1); 2.画一个cos曲线 >> y2 = cos( * pi * * t); >> plot(t,y2); 3.将两个曲线合并在一起 >> plot(t,y1); >>…
接上一部分,此篇将用tensorflow建立神经网络,对波士顿房价数据进行简单建模预测. 二.使用tensorflow拟合boston房价datasets 1.数据处理依然利用sklearn来分训练集和测试集. 2.使用一层隐藏层的简单网络,试下来用当前这组超参数收敛较快,准确率也可以. 3.激活函数使用relu来引入非线性因子. 4.原本想使用如下方式来动态更新lr,但是尝试下来效果不明显,就索性不要了. def learning_rate(epoch): if epoch < 200: re…
一.根据波士顿房价信息进行预测,多元线性回归+特征数据归一化 #读取数据 %matplotlib notebook import tensorflow as tf import matplotlib.pyplot as plt import numpy as np import pandas as pd #能快速读取常规大小的文件.Pandas能提供高性能.易用的数据结构和数据分析工具 from sklearn.utils import shuffle #随机打乱工具,将原有序列打乱,返回一个全…
目录 题目要求 单特征线性回归 方案一 方案二 多特征线性回归 两份数据 ex1data1.txt ex1data2.txt 题目要求 建立房价预测模型:利用ex1data1.txt(单特征)和ex1data2.txt(多特征)中的数据,进行线性回归和预测. 作散点图可知,数据大致符合线性关系,故暂不研究其他形式的回归. 两份数据放在最后. 单特征线性回归 ex1data1.txt中的数据是单特征,作一个简单的线性回归即可:\(y=ax+b\). 根据是否分割数据,产生两种方案:方案一,所有样本…