caffe.cpp解析】的更多相关文章

来自链接:http://blog.csdn.net/u014114990/article/details/47747025 主要讲解:GetBrewFunction()函数定义如下,其返回BrewFunction函数指针. g_brew_map实现过程,首先通过 typedef定义函数指针 g_brew_map定义 g_brew_map 初始化 typedef int (*funcptr)(); 什么意思 #define 宏定义 inline函数和用macro定义的函数区别…
补:主要函数运行顺序: main>>GetBrewFunction>>train>>Solve 從main函數說起: 1.gflags庫中爲main函數設置usage信息 是google的一個開源的處理命令行的參數的庫.在使用命令行參數的文件夾文件中(源文件或頭文件),首先使用以下定義語句進行變量的定義. DEFINE_int32, DEFINE_int64, DEFINE_bool等, 語法爲:DEFINE_int32(name,default_value,"…
caffe.cpp文件完成对网络模型以及模型配置参数的读入和提取,提供了网络模型训练的入口函数train和对模型的测试入口函数test.文件中使用了很多gflags和glog指令,gflags是google的一个开源的处理命令行参数的库,glog是一个有效的日志记录工具. 补充一点CUDA中查询GPU设备属性的知识: CUDA C中的cudaGetDeviceProperties函数可以很方便的获取到设备的信息,caffe.cpp中就使用到了这个函数查询设备信息,函数原型是: cudaError…
stereo_calib是OpenCV官方代码中提供的最正统的双目demo,无论数据集还是代码都有很好实现. 一.代码效果: 相关的内容包括28张图片,1个xml和stereo_calib.cpp的代码 直接引入的代码不能给正常运行,我们需要进行一些修改. 报了4个错误,主要是定义和引入问题,都可以解决. 包括定义: #define  INTER_LINEAR_EXACT 1 以及 主要目的,就是确保输入的参数正确,图片能够被读到. 由于原始代码很贴心地将参数都设置正确了(可以参考下图,长为9.…
Layer 功能: 是全部的网络层的基类,当中.定义了一些通用的接口,比方前馈.反馈.reshape,setup等. #ifndef CAFFE_LAYER_H_ #define CAFFE_LAYER_H_ #include <algorithm> #include <string> #include <vector> #include "caffe/blob.hpp" #include "caffe/common.hpp" #…
json write : { "array" : [ { "aaaaaa" : "bbbbbb", "number" : 999, "string" : "this is a string" } ], "arrnum" : [ null, 1, 2, 3, 4, 5, 6 ], "name" : "json", "nu…
主要功能: Blob 是Caffe作为传输数据的媒介,不管是网络权重參数,还是输入数据,都是转化为Blob数据结构来存储,网络,求解器等都是直接与此结构打交道的. 其直观的能够把它看成一个有4纬的结构体(包括数据和梯度).而实际上,它们仅仅是一维的指针而已,其4维结构通过shape属性得以计算出来(依据C语言的数据顺序). 其成员变量有: protected: shared_ptr<SyncedMemory> data_;// 存放数据 shared_ptr<SyncedMemory&g…
功能: 计算训练数据库的平均图像. 由于平均归一化训练图像会对结果有提升,所以Caffe里面,提供了一个可选项. 用法: compute_image_mean [FLAGS] INPUT_DB [OUTPUT_FILE]\n") 參数:INPUT_DB: 数据库 參数(可选):OUTPUT_FILE: 输出文件名称,不提供的话,不保存平均图像blob 实现方法: 数据源:求平均图像的方法是直接从数据库(LevelDB或者LMDB)里面直接读取出来的,而不是直接用图像数据库里面求出,意味着,必须先…
caffe的运行提供三种接口:C++接口(命令行).Python接口和matlab接口.本文先对命令行进行解析,后续会依次介绍其它两种接口. caffe的C++主程序(caffe.cpp)放在根目录下的tools文件夹内,当然还有一些其它的功能文件,如:convert_imageset.cpp,train_net.cpp,test_net.cpp等也放在这个文件夹内.经过编译后,这些文件都被编译成了可执行文件,放在了./build/tools/文件夹内.因此我们要执行caffe程序,都需要加./…
PS:本系列为本人初步学习caffe所记,由于理解尚浅,其中多有不足之处和错误之处,有待改正. 一.实现方法 首先,将文件名与它对应的标签用 std::pair 存储起来,其中first存储文件名,second存储标签, 其次,数据通过 Datum datum来存储,将图像与标签转为Datum 需要通过函数ReadImageToDatum() 来完成, 再次, Datum 数据又是通过datum.SerializeToString(&out)把数据序列化为字符串 string out;, 最后,…
caffe的运行提供三种接口:c++接口(命令行).python接口和matlab接口.本文先对命令行进行解析,后续会依次介绍其它两个接口. caffe的c++主程序(caffe.cpp)放在根目录下的tools文件夹内, 当然还有一些其它的功能文件,如:convert_imageset.cpp, train_net.cpp, test_net.cpp等也放在这个文件夹内.经过编译后,这些文件都被编译成了可执行文件,放在了 ./build/tools/ 文件夹内.因此我们要执行caffe程序,都…
Caffe学习笔记(一):Caffe架构及其模型解析 写在前面:关于caffe平台如何快速搭建以及如何在caffe上进行训练与预测,请参见前面的文章<caffe平台快速搭建:caffe+window7+vs2013>.<Windows平台上Caffe的训练与学习方法(以数据库CIFAR-10为例)>. 本文主要介绍Caffe的总体框架,并对caffe模型进行解析,主要是本人的学习笔记,参考了各种资料,例如:<Caffe官方教程中译本>,网址:http://caffe.b…
caffe中solver的作用就是交替低啊用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法. solver.cpp中的Solver提供了执行模型训练的入口,在caffe.cpp中train函数的最后通过 solver->Solve()调用: template <typename Dtype> void Solver<Dtype>::Solve(const char* resume_file) { //检查是…
caffe的c++主程序(caffe.cpp)放在根目录下的tools文件夹内, 当然还有一些其它的功能文件,如:convert_imageset.cpp, train_net.cpp, test_net.cpp等也放在这个文件夹内.经过编译后,这些文件都被编译成了可执行文件,放在了 ./build/tools/ 文件夹内.因此我们要执行caffe程序,都需要加 ./build/tools/ 前缀. 如: # sudo sh ./build/tools/caffe train --solver=…
先从一个具体的例子来开始Caffe,以MNIST手写数据为例. 1.下载数据 下载mnist到caffe-master\data\mnist文件夹. THE MNIST DATABASE:Yann LeCun et al. train-images-idx3-ubyte.gz:  training set images (9912422 bytes)  train-labels-idx1-ubyte.gz:  training set labels (28881 bytes)  t10k-ima…
参考网址:https://www.cnblogs.com/louyihang-loves-baiyan/p/5149628.html 1.caffe代码层次熟悉blob,layer,net,solver几类,blob:作为数据输出的媒介,无论是网络权重参数,还是输入数据,都是转化为blob数据结构来存储.layer:作为网络的基础单元,神经网络中层与层间的数据节点.前后传递都在数据结构中被实现,net:作为网络的整体骨架,决定了网络中的层次数目以及各个层的类别solver:作为网络的求解策略,涉…
caffe目录: ├── build -> .build_release // make生成目录,生成各种可执行bin文件,直接调用入口: ├── cmake ├── CMakeLists.txt ├── CONTRIBUTING.md ├── CONTRIBUTORS.md ├── data ├── distribute ├── docker ├── docs ├── examples //很多demo可以尝试使用: ├── include ├── INSTALL.md ├── LICENSE…
一.数据层及参数 要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer)构成,每一屋又由许多参数组成.所有的参数都定义在caffe.proto这个文件中.要熟练使用caffe,最重要的就是学会配置文件(prototxt)的编写. 层有很多种类型,比如Data,Convolution,Pooling等,层之间的数据流动是以Blobs的方式进行. 今天我们就先介绍一下数据层. 数据层是每个模型的最底层,是模型的入口,不仅提供数据的输…
首先查看caffe.cpp里的train函数: // Train / Finetune a model. //训练,微调一个网络模型 int train() { // google的glog库,检查--solver.--snapshot和--weight并输出消息:必须有指定solver,snapshot和weight两者指定其一: CHECK_GT(FLAGS_solver.size(), ) << "Need a solver definition to train."…
protobuf是google公司开发的,并在Google内部久经考验的一个东西,在08年google把它贡献给了开源社区,随后便有越来越多的人使用它.protobuf是一个结构化信息传递的工具,主要用于数据存储.传输协议格式等场合. 对于数据:Number*Channel*Height*Width 对于卷积权重:Output*Input*Height*Width 对于卷积偏置:Output*1*1*1 Caffe官方教程 :Blobs,Layers,Nets: caffe模型解剖   (Caf…
本文大致记录使用caffe的一次完整流程 Process 1 下载mnist数据集(数据量很小),解压放在data/mnist文件夹中:2 运行create_mnist.sh,生成lmdb格式的数据(data+label):$CAFFEROOT/build/tools/convert_imageset 可以用来做把原始图片转换为LevelDB或者 Lmdb格式. 3 运行build/tools/caffe train --solver=examples/mnist/lenet_solver.pr…
@author:oneBite 本文记录编译使用caffe for windows 使用环境 VS2013 ultimate,win7 sp1,caffe-windows源码(从github上下载caffe的windows分支,下载解压之后,不要改变原有的目录结构,因为solution rebuild时会使用文件的相对路径) 编译过程 根据需要修改caffe-windows\caffe-windows\windows\CommonSettings.props.本次编译生成不使用GPU和CuDNN…
Lenet5的应用和原理.实现 ----------------------------------------------ubuntu16.04.2---------------------------------------------------------- ubuntu16.04.2: #获取数据 cd data/mnist sh get_mnist.sh #转换格式 sh examples/mnist/create_mnist.sh# 训练模型 sh examples/mnist/t…
为了程序的简洁,在caffe中是不带练习数据的,因此需要自己去下载.但在caffe根目录下的data文件夹里,作者已经为我们编写好了下载数据的脚本文件,我们只需要联网,运行这些脚本文件就行了. 注意:在caffe中运行所有程序,都必须在根目录下进行. 1.mnist实例 mnist是一个手写数字库.mnist最初用于支票上的手写数字识别, 现在成了DL的入门练习库.征对mnist识别的专门模型是Lenet,算是最早的cnn模型了. mnist数据训练样本为60000张,测试样本为10000张,每…
Caffe的整体流程图: 程序入口:main() int main(int argc, char** argv) { ..... ]))(); .... } g_brew_map实现过程,首先通过 typedef定义函数指针 typedef int (*BrewFunction)(); 这个是用typedef定义函数指针方法.这个程序定义一个BrewFunction函数指针类型,在caffe.cpp 中 BrewFunction 作为GetBrewFunction()函数的返回类型,可以是 tr…
最近一段时间,认真研究了一下caffe.但是,里面内容过多,集合了CPU版本和GPU版本的代码,导致阅读起来有些复杂.因此,特意对caffe代码进行了重构,搭建一个基于CPU版本的Caffe推理框架. 此简化的Caffe推理框架具有以下特点: 只有CPU推理功能,无需GPU: 只有前向计算能力,无后向求导功能: 接口保持与原版的Caffe一致: 精简了大部分代码,并进行了详尽注释. 通过对Caffe的重构,理解了如何搭建一个推理框架,如何从输入一张图片从而得到结果.注意:此框架只是用于教学使用,…
前段时间在笔记本上配置了Caffe框架,中间过程曲曲折折,但由于懒没有将详细过程总结下来,这两天又在一台配置较高的台式机上配置了Caffe,配置时便非常后悔当初没有写到博客中去,现已配置好Caffe,故应当立即写到博客中去,不可再拖延~ 准备工具:Win7(64位):Caffe;vs2013;anaconda; (附注:1.Caffe下载链接:https://github.com/Microsoft/caffe(这其中有两个版本,一个是Caffe-Windows(微软制作),一个是Caffe-M…
现在有这样的一个场景:给一张行人的小矩形框图片, 根据该行人的特征识别出性别. 分析: (1),行人的姿态各异,变化多端.很难提取图像的特定特征 (2),正常人肉眼判别行人的根据是身材比例,头发长度等.(如果是冬天的情况下,行人穿着厚实,性别识别更加难) solution: 针对难以提取特定特征的图像,可以采用卷积神经网络CNN去自动提取并训练. 数据准备:  采用 PETA数据集,Pedestrain Attribute Recognition At Far Distance. 该数据集一共包…
由于我涉及一个车牌识别系统的项目,计划使用深度学习库caffe对车牌字符进行识别.刚开始接触caffe,打算先将示例中的每个网络模型都拿出来用用,当然这样暴力的使用是不会有好结果的- -||| ,所以这里只是记录一下示例的网络模型使用的步骤,最终测试的准确率就暂且不论了! 一.图片数据库 来源 我使用的图像是在项目的字符分割模块中分割出来的字符图像,灰度化并归一化至32*64,字符图片样本示例如下: 建立自己的数据文件夹 在./caffe/data/目录下建立自己的数据文件夹mine,并且在mi…
caffe.bin :command line brew usage : caffe  <command><args> commands: train:  训练或者微调一个网络 test: 对一个模型打分测试 device_query:   显示GPU诊断信息 time:   评估模型执行时间 Flags from tools/caffe.cpp: -gpu (可选参数,给定时运行在GPU模式,'-gpu all' 则表示运行在所有可用的GPU设备上,此时真正训练批量大小是N×B,…