洛谷题面传送门 PGF 入门好题. 首先介绍一下 PGF 的基本概念.对于随机变量 \(X\),满足 \(X\) 的取值总是非负整数,我们即 \(P(v)\) 表示 \(X=v\) 的概率,那么我们定义 \(X\) 的概率生成函数为 \(F(x)=\sum\limits_{n\ge 0}P(n)x^n\).较一般的生成函数有所不同的是,对于概率生成函数 \(F(1)=1\) 必然成立,因为 \(X\) 取遍所有值的概率之和为 \(1\).此外,\(X\) 的期望 \(E(X)\) 也可表示为 \…
题面 传送门 给定一个长度为\(L\)的序列\(A\).然后每次掷一个标有\(1\)到\(m\)的公平骰子并将其上的数字加入到初始为空的序列\(B\)的末尾,如果序列B中已经出现了给定序列\(A\),即\(A\)是\(B\)的子串,则停止, 求序列\(B\)的期望长度.\(L ≤ 10^5\) 题解 不知道概率生成函数是什么的可以看看这篇文章,题解也在里面了 //minamoto #include<bits/stdc++.h> #define R register #define fp(i,a…
传送门 orz ymd 考虑构造生成函数:设\(F(x) = \sum\limits_{i=0}^\infty f_ix^i\),其中\(f_i\)表示答案为\(i\)的概率:又设\(G(x) = \sum\limits_{i=0}^\infty g_ix^i\),其中\(g_i\)表示经过了\(i\)步之后还没有结束的概率.那么答案显然是\(F'(1)\). 考虑在还没有结束的序列之后加入一个字符,那么有可能结束也有可能没有结束,即\(F(x) + G(x) = xG(x) + 1\). 两边…
[题解]歌唱王国(概率生成函数+KMP)+伦讲的求方差 生成函数的本质是什么呀!为什么和It-st一样神 设\(f_i\)表示填了\(i\)个时候停下来的概率,\(g_i\)是填了\(i\)个的时候不停下的来的概率,规定\(f_0=g_0=1\) 两个生成函数是 \[ G(x)=\sum g(i)x^i \\ F(x)=\sum f(i)x^i \] 可以得到一些关系: 在后面随意加上一个字符 \[ xG(x)+1=F(x)+G(x) \] 直接强行接上原串: \[ x^LG(x)(\dfrac…
传送门 这题\(\mathrm{YMD}\)去年就讲了,然而我今年才做(捂脸) 考虑生成函数,设\(f_i\)表示最终串长为\(i\)的概率,其概率生成函数为\(F(x)=\sum f_ix^i\),设\(g_i\)表示做到长度为\(i\)没结束的概率,其概率生成函数为\(G(x)=\sum g_ix^i\),那我们要求的就是\(F'(1)\) 考虑他们之间的关系,首先如果在一个没有结束的串后接一个字符,那么这个串可能结束也可能没结束,可以得到\(F(x)+G(x)=xG(x)+1\),两边对\…
[BZOJ1152]歌唱王国(生成函数,KMP) 题面 BZOJ 洛谷 题解 根据\(YMD\)论文来的QwQ. 首先大家都知道普通型生成函数是\(\displaystyle \sum_{i=0}^{\infty}a_ix^i\),类似的定义概率生成函数\(\displaystyle F(x)=\sum_{i=0}^\infty P(X=i)x^i\).其中\(P(X=i)\)表示\(X\)这个随机变量为\(i\)的概率. 那么我们可以知道几个结论:\(\displaystyle F(1)=\s…
[CTSC2006]歌唱王国 Tags:题解 题意 链接:在空串后不断随机添加字符,直到出现串\(S_i\)为止.求最终串的期望长度.\(\sum |S_i|\le 5*10^6\) 题解 以下内容来自\(YMD\)的2018年集训队论文 很奇怪的生成函数题: 令\(f[i]\)表示串最终长度为\(i\)的概率,\(g[i]\)表示到达长度\(i\)还没有结束的概率.分别对应生成函数\(F(x),G(x)\).最后要求的就是\(F'(1)\)(求导,相当于每个概率都乘上了指数也就是长度,变成了期…
[CTSC2006]歌唱王国Singleland Time Limit: 30 Sec Memory Limit: 162 MB Description 在歌唱王国,所有人的名字都是一个非空的仅包含整数1~n的字符串.王国里生活着一大群咕噜兵,他们靠不停的 歌唱首领--牛人酋长们的名字来获取力量.咕噜兵每一次歌唱过程是这样的:首先,他从整数生成器那儿获得一 个数字,然后花一个时间单位将此数字唱出来,如果他发现某个牛人酋长的名字已经被歌唱出来(即此名字是歌唱 序列的一个连续子串),那么这次歌唱过程…
题目链接戳这里 题目描述 有\(n\)件不同的商品,每件物品都有无限个,输出总体积为\([1,m]\)的方案数 思路 直接跑背包有\(30\) 考虑把每个物品的生成函数设出来,对于一件体积为\(v\)的物品: \[f(x)=1+x^v+x^{2v}+\cdots +x^{kv}+\cdots \] 那么答案\(F(x)\)就是每个物品的\(f\)卷起来: \[F(x)=\prod\limits_{i=1}^{n}f_i(x)=\prod\limits_{i=1}^{n}\frac{1}{1-x^…
传送门 同样是回过头来发现不会做了,要加深一下记忆. 思路 只要听说过生成函数的人相信第一眼都可以想到生成函数. 所以我们要求 \[ ans=\prod \sum_n x^{nV}=\prod \frac{1}{1-x^V} \] 也就是\(\prod (1-x^V)\). 但这玩意好像还是不会做,怎么办呢? 按照套路,可以先\(\ln\)一下,加起来,再\(\exp\)回去. 所以现在要求 \[ \sum \ln(1-x^V) \] -- -- -- 不会. 不会怎么办? 打表找规律! 经过打…
题面 传送门 前置芝士 矩阵树,基本容斥原理,生成函数,多项式\(\exp\) 题解 我也想哭了--orz rqy,orz shadowice 我们设\(T1,T2\)为两棵树,并定义一个权值函数\(w(T1,T2)=y^{n-|T1\cap T2|}\),其中\(|T1\cap T2|\)为两棵树共同拥有的边的数目 显然,\(w(T1,T2)\)就是两棵树在该情况下的方案个数,因为\(T1\cap T2\)后的图中每个连通块只能用同一种颜色,而\(n-|T1\cap T2|\)就是连通块个数…
题目:https://www.luogu.org/problemnew/show/P3830 询问1:f[x]表示有x个叶节点的树的叶节点平均深度: 可以把被扩展的点的深度看做 f[x-1] ,于是两个新点深度为 f[x-1]+1,而剩下的x-2个点平均深度就是f[x-1]: 所以f[x] = [ f[x-1] * (x-2) + (f[x-1] + 1) * 2 ] / x : 整理得到f[x] = f[x-1] + 2 / x : 询问2:f[i][j]表示有i个叶子节点.深度为j的概率:…
传送门 我的floyd竟然写错了?今年NOIP怕不是要爆零了? 这就是一个概率dp 我们用$dp[i][j][k]$表示在第$i$个时间段,已经申请了$j$次,$k$表示本次换或不换,然后直接暴力转移 点数只有300,跑一遍floyd //minamoto #include<iostream> #include<cstdio> #include<cstring> #define inf 1e17 using namespace std; template<:;}…
传送门 神仙题啊……这思路到底是怎么来的…… ps:本题是第$k$次买邮票需要$k$元,而不是买的邮票标号为$k$时花费$k$元 我们设$g[i]$表示现在有$i$张,要买到$n$张的期望张数,设$P(x,i)$表示买$x$次能从$i$张买到$n$张的概率,则有$$g[i]=\sum_{x=0}^\infty x\times P(x,i)$$ 然后考虑一下递推关系式,有$$g[i]=g[i+1]+\frac{n}{n-i},g[n]=0$$ 于是就可以愉快的递推了 然后设$f[i][j]$表示现…
题目大意:$n$ 个点的完全图,点 $i$ 和点 $j$ 的边权为 $(i+j)^k$.随机一个生成树,问这个生成树边权和的期望对 $998244353$ 取模的值. 对于P5437:$1\le n\le 998244352,1\le k\le 10^7$. 对于P5442:$1\le n\le 10^4,\le k\le 10^7$. 其实也是一道比较简单的题.(所以就应该把这题和上一道原题调个位置) 考虑一条边在生成树中出现的概率,由于一共有 $\dfrac{n(n-1)}{2}$ 条边,一…
作者:zifeiy 标签:概率DP 题目链接:https://www.luogu.org/problem/P2719 我们设 f[n][m] 用于表示还剩下n张A类票m张B类票时最后两张票相同的概率,则: 如果 \(n \le 1\) 且 \(m \le 1\) ,则 \(f[n][m] = 0\) (凑不齐两张一样的) 否则,如果 \(n == 0\) 或者 \(m == 0\),则 \(f[n][m] = 1\) (肯定是一样的两张票) 否则,\(f[n][m] = (f[n-1][m] +…
题解 读错题了,是最后留下一个牛人首长歌颂他,和其他人没有关系,t就相当于数据组数 结论题,具体可看 https://www.zhihu.com/question/59895916/answer/196874145 最后一个求导(1 - z)不拆,最后代入1的时候会消掉,就得出了这个结论 代码 #include <iostream> #include <cstdio> #include <vector> #include <algorithm> #inclu…
前言 传送门 很多人写了题解了,我就懒得写了,推荐一篇博客 那就分享一下我的理解吧(说得好像有人看一样 对于每个点都只有选与不选两种情况,所以直接用倍增预处理出来两种情况的子树之内,子树之外的最值,最终答案以拼凑的方式得出 如果这个题要修改权值的话就真的只能用动态dp了(好像还有那个什么全局平衡树 我真的觉得去年出题人只是想出一个倍增,结果被动态dp干了(Ark:出题人真的只是想出一个动态dp #include<cstdio> #include<cstring> #include&…
题目描述 传送门 分析 首先判掉 \(INF\) 的情况 第一种情况就是不能从 \(s\) 走到 \(t\) 第二种情况就是从 \(s\) 出发走到了出度为 \(0\) 的点,这样就再也走不到 \(t\) 然后我们去考虑 \(60\) 分的做法 我们设 \(dp[u]\) 为当前在点 \(u\) 走到点 \(t\) 的期望步数 那么就有 \(dp[u]=\sum_{u->v}^v((dp[v]+1) \times \frac{1}{rd[u]})\) 移项之后就变成了 \(dp[u]-\sum_…
题目传送门 Desctiption 见题面. Solution 人类智慧... 考虑这样一个赌博游戏,现在有一个猴子,它随机从 \(1\sim n\) 中选一个打出来.现在有若干个赌徒,他们一开始都有 \(\$1\),现在有一个字符串 \(S\),赌徒在第一次押猴子会打 \(S_1\),如果赢了就回收 \(\$ n\) ,如果输了就可以滚他的蛋了.如果赌徒赢了就继续押猴子会打 \(S_2\),如果赢了就回收 \(\$ n^2\) ,否则就可以滚蛋了.以此类推,并且猴子每打一个字都会新加进来一个赌…
看了jcvb的WC2015交流课件.虽然没懂后面的复合逆部分,但生成函数感觉受益良多. 指数生成函数 集合中大小为 i 的对象的权值是 \( a_i \) ,该集合的生成函数是 \( \sum\limits_{i>=0} \frac{a_i}{i!} x^i \) 一个重要式子: \( \sum\limits_{i=0}^{\infty} \frac{A^i}{i!} = e^A \) .其中 A 可以是一个多项式. 对于有标号对象的计数.可以“拼接”,即 “大小为 i 的集合的带标号方案” 与…
正题 题目链接:https://www.luogu.com.cn/problem/P4548 题目大意 \(t\)次询问,给出一个长度为\(m\)的串\(S\)和一个空串\(T\),每次在\(T\)后面随机加入\(1\sim n\)的字符,直到\(T\)中出现\(S\)为止,求期望次数. \(1\leq n\leq 10^5,t\leq 50,1\leq m\leq 10^5\) 解题思路 对于一个随机的数字\(X\),它的概率生成函数是一个形如 \[F(x)=\sum_{i=0}^\infty…
题面 传送门 题解 不知道概率生成函数是什么的可以看看这篇文章,题解也在里面了 //minamoto #include<bits/stdc++.h> #define R register #define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i) #define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i) #define go(u) for(int i=head[u],v=e[i].v;i;i=e[…
比较水的一题.居然是一道没看题解就会做的黑题…… 题目链接:洛谷 题目大意:定义一个长度为 $m$ 的正整数序列 $a$ 的价值为 $\prod f_{a_i}$.($f$ 是斐波那契数)对于每一个 $\sum a_i=n$ 的正整数序列,求出它们的价值之和. $1\le n\le 10^6$. 这题一看就是生成函数瞎搞. 令 $F$ 为 $f$ 的生成函数. 那么有 $F=x\times F+x^2\times F+x$. 就有 $F=\dfrac{x}{1-x-x^2}$. 答案即为 $\s…
[洛谷5月月赛]玩游戏(NTT,生成函数) 题面 Luogu 题解 看一下要求的是什么东西 \((a_x+b_y)^i\)的期望.期望显然是所有答案和的平均数. 所以求出所有的答案就在乘一个逆元就好了. 现在考虑怎么算上面那个东西. 对于单个的计算,我们可以用二项式定理直接展开 得到 \[\begin{aligned}\sum(a+b)^k&=\sum\sum_{i=0}^kC_k^ia^ib^{k-i}\\&=\sum_{i=0}^kC_k^i(\sum a^i)(\sum b^{k-i…
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - 洛谷2973 题意概括 有N个城市,M条双向道路组成的地图,城市标号为1到N.“西瓜炸弹”放在1号城市,保证城市1至少连接着一个其他城市.“西瓜炸弹”有P/Q的概率会爆炸,每次进入其它城市时,爆炸的概率相同.如果它没有爆炸,它会随机的选择一条道路到另一个城市去,对于当前城市所连接的每一条道路都有相同的可能性被选中.对于给定的地图,求每个城市“西瓜炸弹”爆炸的概率. 题解 通过概率关系构建方程: 其中in[j…
题面 Bzoj 洛谷 题解 首先考虑从儿子来的贡献: $$ f[u]=\prod_{v \in son[u]}f[v]+(1-f[v])\times(1-dis[i]) $$ 根据容斥原理,就是儿子直接亮的概率减去当儿子不亮且他们之间的路径均不直接亮时的概率 接着考虑从父亲来的贡献,设$p$为:$\frac{g[u]\times f[u]}{f[v]+(1-f[v])\times(1-dis[i])}$ 则:(画画图就可以理解) $$ g[v]=p+(1-p)\times(1-dis[i]) $…
洛谷P4475 巧克力王国 题目描述 巧克力王国里的巧克力都是由牛奶和可可做成的. 但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜欢过于甜的巧克力. 对于每一块巧克力,我们设 x 和 y 为其牛奶和可可的含量. 由于每个人对于甜的程度都有自己的评判标准,所以每个人都有两个参数 a 和 b ,分别为他自己为牛奶和可可定义的权重, 因此牛奶和可可含量分别为 x 和 y 的巧克力对于他的甜味程度即为 ax+by. 而每个人又有一个甜味限度 c ,所有甜味程度大于等于 c 的巧克力他都无法接受…
题面 洛谷 题解 \(f[i][j]\)表示有i个人参与游戏,从庄家(即1)数j个人获胜的概率是多少 \(f[1][1] = 1\) 这样就可以不用讨论淘汰了哪些人和顺序 枚举选庄家选那张牌, 枚举下一次的庄家 可以得到这次的庄家 然后转移即可 Code #include<bits/stdc++.h> #define LL long long #define RG register using namespace std; template<class T> inline void…
题面 传送门(loj) 传送门(洛谷) 题解 模拟赛的时候只想出了高斯消元然后死活不知道怎么继续--结果正解居然就是高斯消元卡常? 首先有个比较难受的地方是它一个回合可能不止扣一滴血--我们得算出\(P_i\)表示一回合扣\(i\)滴血的概率,为 \[P_i={{k\choose i}m^{k-i}\over (m+1)^k}\] 所以这个柿子啥意思? 我们可以把\(k\)次扣血看成一个长度为\(k\)的序列,每个序列有\(m+1\)种选择方法,于是总的选法就是\((m+1)^k\).我们要钦定…