zz模型剪枝】的更多相关文章

论文总结 - 模型剪枝 Model Pruning  发表于 2018-10-03 模型剪枝是常用的模型压缩方法之一.这篇是最近看的模型剪枝相关论文的总结. Deep Compression, Han Song 抛去LeCun等人在90年代初的几篇论文,HanSong是这个领域的先行者.发表了一系列关于模型压缩的论文.其中NIPS 2015上的这篇Learning both weights and connections for efficient neural network着重讨论了对模型进…
论文地址:HetConv 一.现有网络加速技术 1.卷积加速技术 作者对已有的新型卷积划分如下:标准卷积.Depthwise 卷积.Pointwise 卷积.群卷积(相关介绍见『高性能模型』深度可分离卷积和MobileNet_v1),后三种卷积可以取代标准卷积,使用方式一般是 Depthwise + Pointwise 或者是 Group + Pointwise 这样的两层取代(已有网络架构中的)标准卷积的一层,成功的在不损失精度的前提下实现了 FLOPs 提升,但是带来副作用是提高了网络延迟(…
我们刚接到一个项目时,一开始并不是如何设计模型,而是去先跑一个现有的模型,看在项目需求在现有模型下面效果怎么样.当现有模型效果不错需要深入挖掘时,仅仅时跑现有模型是不够的,比如,如果你要在嵌入式里面去实现,目前大多数模型大小和计算量都不满足,这就产生了模型压缩和剪枝. 模型压缩常做的是将模型从float变为int8,这不仅带来了模型参数空间上的减少,同时,是的很多较小的参数直接变为0,是的模型压缩可以变得比较小(一般是缩小到原来的20),但是这种方式下,压缩后的模型不一定能work,还得调整.…
对抗性鲁棒性与模型压缩:ICCV2019论文解析 Adversarial Robustness vs. Model Compression, or Both? 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Ye_Adversarial_Robustness_vs._Model_Compression_or_Both_ICCV_2019_paper.pdf Code is available at https://githu…
​  前言  由于内存和计算资源有限,在嵌入式设备上部署卷积神经网络 (CNN) 很困难.特征图中的冗余是那些成功的 CNN 的一个重要特征,但在神经架构设计中很少被研究. 论文提出了一种新颖的 Ghost 模块,可以从廉价操作中生成更多的特征图.提出的 Ghost 模块可以作为即插即用的组件来升级现有的卷积神经网络.堆叠Ghost Module建立了轻量级的 GhostNet. GhostNet 可以实现比 MobileNetV3 更高的识别性能(例如 75.7% 的 top-1 准确率),并…
作者:朱建平 腾讯云技术总监,腾讯TEG架构平台部专家工程师 1.关于人工智能的若干个错误认知 人工智能是AI工程师的事情,跟我没有什么关系 大数据和机器学习(AI) 是解决问题的一种途径和手段,具有通用性,是一个基础的技能.当前我们工作中还有很多决策,是基于经验和预定的规则,未来这部分决策可以通过AI让我们做得更合理更好一些. 人工智能太厉害了,未来会取代人类 随着人工智能的发展,特别去年谷歌的AlphaGo围棋战胜代表人类的顶级棋手李世石,更是引爆了整个互联网.于是,网上不少人开始了很多担忧…
0. 算法概述 决策树(decision tree)是一种基本的分类与回归方法.决策树模型呈树形结构(二分类思想的算法模型往往都是树形结构) 0x1:决策树模型的不同角度理解 在分类问题中,表示基于特征对实例进行分类的过程,它可以被看作是if-then的规则集合:也可以被认为是定义在特征空间与类空间上的条件概率分布 1. if-then规则集合 决策树的属性结构其实对应着一个规则集合:由决策树的根节点到叶节点的每条路径构成的规则组成:路径上的内部特征对应着if条件,叶节点对应着then结论. 决…
转自:https://zhuanlan.zhihu.com/p/35394369 YOLOv3的前世今生 2013年,R-CNN横空出世,目标检测DL世代大幕拉开. 各路豪杰快速迭代,陆续有了SPP,fast,faster版本,至R-FCN,速度与精度齐飞,区域推荐类网络大放异彩. 奈何,未达实时检测之基准,难获工业应用之青睐. 此时,凭速度之长,网格类检测异军突起,先有YOLO,继而SSD,更是摘实时检测之桂冠,与区域推荐类二分天下.然准确率却时遭世人诟病. 遂有JR一鼓作气,并coco,推v…
对于深度卷积神经网络而言,准确度和计算成本往往难以得兼,研究界也一直在探索通过模型压缩或设计新型高效架构来解决这一问题.印度理工学院坎普尔分校的一篇 CVPR 论文则给出了一个新的思路——使用异构的卷积过滤器:实验表明这种方法能在保证准确度的同时显著降低计算成本. 选自arXiv,作者:Pravedra Singh等,机器之心编译,参与:熊猫. 论文:https://arxiv.org/abs/1903.04120 摘要:我们提出了一种全新的深度学习架构,其中的卷积运算利用了异构核.相比于标准的…
目录 1. 动机详述和方法简介 2. 相关工作 3. 方法 3.1 Formulation 3.2 实现 3.3 弱监督学习 4. 实验 4.1 基本实验 4.2 深入实验 [算法和公式很simple,甚至有点naive,但文章的写作不错] 为了让小网络具有大能力,我们通常使用蒸馏.这篇文章提出了一种新方法:深度相互学习(deep mutual learning, DML).与蒸馏法不同,相互学习中存在多个学生共同学习,并且每个学生之间要互相学习.实验还发现了一个惊人的结果:我们不需要piror…