spark-shell操作hive】的更多相关文章

spark可以通过读取hive的元数据来兼容hive,读取hive的表数据,然后在spark引擎中进行sql统计分析,从而,通过spark sql与hive结合实现数据分析将成为一种最佳实践.配置步骤如下: 1.启动hive的元数据服务 hive可以通过服务的形式对外提供元数据读写操作,通过简单的配置即可  编辑 $HIVE_HOME/conf/hive-site.xml,增加如下内容:<property><name>hive.metastore.uris</name>…
作为数据工程师,我日常用的主力语言是R,HiveQL,Java与Scala.R是非常适合做数据清洗的脚本语言,并且有非常好用的服务端IDE——RStudio Server:而用户日志主要储存在hive中,因此用HiveQL写job也是日常工作之一:当然R的执行效率确实不靠谱,因此还需要Java(Elasticsearch,Hadoop的原生语言)与Scala(Spark的原生语言)的帮助. R和python一样也是一个很好的胶水语言,在搜索引擎的实战中,我就是用R来完成了ES集群索引的全量/增量…
package iie.hadoop.hcatalog.spark; import iie.udps.common.hcatalog.SerHCatInputFormat; import iie.udps.common.hcatalog.SerHCatOutputFormat; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.…
Spark 2.0以前版本:val sparkConf = new SparkConf().setAppName("soyo")    val spark = new SparkContext(sparkConf) Spark 2.0以后版本:(上面的写法兼容)直接用SparkSession:val spark = SparkSession      .builder      .appName("soyo")      .getOrCreate()    var…
RDD有两种类型的操作 ,分别是Transformation(返回一个新的RDD)和Action(返回values). 1.Transformation:根据已有RDD创建新的RDD数据集build (1)map(func):对调用map的RDD数据集中的每个element都使用func,然后返回一个新的RDD,这个返回的数据集是分布式的数据集. (2)filter(func) :对调用filter的RDD数据集中的每个元素都使用func,然后返回一个包含使func为true的元素构成的RDD.…
前一篇文章是Spark SQL的入门篇Spark SQL初探,介绍了一些基础知识和API,可是离我们的日常使用还似乎差了一步之遥. 终结Shark的利用有2个: 1.和Spark程序的集成有诸多限制 2.Hive的优化器不是为Spark而设计的,计算模型的不同,使得Hive的优化器来优化Spark程序遇到了瓶颈. 这里看一下Spark SQL 的基础架构: Spark1.1公布后会支持Spark SQL CLI . Spark SQL的CLI会要求被连接到一个Hive Thrift Server…
摘要:结构上Hive On Spark和SparkSQL都是一个翻译层,把一个SQL翻译成分布式可执行的Spark程序. 本文分享自华为云社区<Hive on Spark和Spark sql on Hive有啥区别?>,作者:dayu_dls . 结构上Hive On Spark和SparkSQL都是一个翻译层,把一个SQL翻译成分布式可执行的Spark程序.Hive和SparkSQL都不负责计算.Hive的默认执行引擎是mr,还可以运行在Spark和Tez.Spark可以连接多种数据源,然后…
1.ubuntu 装mysql 2.进入mysql: 3.mysql>create database hive (这个将来是存 你在Hive中建的数据库以及表的信息的(也就是元数据))mysql=>hive 这里不存具体数值 4.mysql> grant all on *.* to hive@localhost identified by 'hive' #将所有数据库的所有表的所有权限赋给hive用户,后面的hive是配置hive-site.xml中配置的连接密码 5.mysql>…
依赖 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-hive_2.11</artifactId> <version>2.1.3</version> </dependency> scala代码 package com.zy.sparksql import org.apache.spark.SparkContext import…
2.6.与 Hive 的集成2.6.1.HBase 与 Hive 的对比1) Hive(1) 数据仓库Hive 的本质其实就相当于将 HDFS 中已经存储的文件在 Mysql 中做了一个双射关系,以方 便使用 HQL 去管理查询.(2) 用于数据分析.清洗Hive 适用于离线的数据分析和清洗,延迟较高.(3) 基于 HDFS.MapReduceHive 存储的数据依旧在 DataNode 上,编写的 HQL 语句终将是转换为 MapReduce 代码执行. 2) HBase(1) 数据库是一种面…
spark 支持 shell 操作 shell 主要用于调试,所以简单介绍用法即可 支持多种语言的 shell 包括 scala shell.python shell.R shell.SQL shell 等 spark-shell 用于在 scala 的 shell 模式下操作 spark pyspark 用于在 python 的 shell 模式下操作 spark spark-sql 用于在 spark-sql 模式下运行 sql,后续会讲 sparkSQL 支持 3 种模式的 shell l…
1. 读取数据库的形式创建DataFrame DataFrameFromJDBC object DataFrameFromJDBC { def main(args: Array[String]): Unit = { // 创建SparkSession实例 val spark: SparkSession = SparkSession.builder() .appName(this.getClass.getSimpleName) .master("local[*]") .getOrCrea…
1.hive动态分区,只需进行以下设置 val spark = SparkSession.builder() .appName("hivetest") .master("local") .getOrCreate() spark.sql("SET hive.exec.dynamic.partition = true") spark.sql("SET hive.exec.dynamic.partition.mode = nonstrict…
基础 Spark的shell作为一个强大的交互式数据分析工具,提供了一个简单的方式学习API.它可以使用Scala(在Java虚拟机上运行现有的Java库的一个很好方式)或Python.在Spark目录里使用下面的方式开始运行: ./bin/spark-shell 在Spark Shell中,有一个专有的SparkContext已经为您创建好了,变量名叫做sc.自己创建的SparkContext将无法工作.可以用--master参数来设置SparkContext要连接的集群,用--jars来设置…
写在前面:hive的版本是1.2.1spark的版本是1.6.x http://spark.apache.org/docs/1.6.1/sql-programming-guide.html#hive-tables 查看hive和spark版本对应情况 SparkSQL操作Hive中的表数据spark可以通过读取hive的元数据来兼容hive,读取hive的表数据,然后在spark引擎中进行sql统计分析,从而,通过sparksql与hive结合实现数据分析将成为一种最佳实践.详细实现步骤如下:…
1.动手实战和调试Spark文件操作 这里,我以指定executor-memory参数的方式,启动spark-shell. 启动hadoop集群 spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ jps8457 Jpsspark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ sbin/start-dfs.sh 启动spark集群 spark@SparkSingleNode:/usr/loc…
终于开始看Spark源码了,先从最常用的spark-shell脚本开始吧.不要觉得一个启动脚本有什么东东,其实里面还是有很多知识点的.另外,从启动脚本入手,是寻找代码入口最简单的方法,很多开源框架,其实都可以通过这种方式来寻找源码入口. 先来介绍一下Spark-shell是什么? Spark-shell是提供给用户即时交互的一个命令窗口,你可以在里面编写spark代码,然后根据你的命令立即进行运算.这种东西也被叫做REPL,(Read-Eval-Print Loop)交互式开发环境. 先来粗略的…
继上次的Spark-shell脚本源码分析,还剩下后面半段.由于上次涉及了不少shell的基本内容,因此就把trap和stty放在这篇来讲述. 上篇回顾:Spark源码分析之Spark Shell(上) function main() { if $cygwin; then # Workaround for issue involving JLine and Cygwin # (see http://sourceforge.net/p/jline/bugs/40/). # If you're us…
引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单机的搭建,是因为作为个人学习的话,单机已足以,好吧,说实话是自己的电脑不行,使用虚拟机实在太卡了... 整个的集群搭建是在公司的测试服务搭建的,在搭建的时候遇到各种各样的坑,当然也收获颇多.在成功搭建大数据集群之后,零零散散的做了写笔记,然后重新将这些笔记整理了下来.于是就有了本篇博文. 其实我在搭…
Spark 基础入门,集群搭建以及Spark Shell 主要借助Spark基础的PPT,再加上实际的动手操作来加强概念的理解和实践. Spark 安装部署 理论已经了解的差不多了,接下来是实际动手实验: 练习1 利用Spark Shell(本机模式) 完成WordCount spark-shell 进行Spark-shell本机模式 第一步:通过文件方式导入数据 scala> val rdd1 = sc.textFile("file:///tmp/wordcount.txt")…
说明:spark版本:2.2.0 hive版本:1.2.1 需求: 有本地csv格式的一个文件,格式为${当天日期}visit.txt,例如20180707visit.txt,现在需要将其通过spark-sql程序实现将该文件读取并以parquet的格式通过外部表的形式保存到hive中,最终要实现通过传参的形式,将该日期区间内的csv文件批量加载进去,方式有两种: 1.之传入一个参数,说明只加载一天的数据进去 2.传入两个参数,批量加载这两个日期区间的每一天的数据 最终打成jar包,进行运行 步…
原文地址:https://www.cnblogs.com/hanzhi/articles/8794984.html 目录 引言 目录 一环境选择 1集群机器安装图 2配置说明 3下载地址 二集群的相关配置 1主机名更改以及主机和IP做相关映射 更改主机名 做主机和IP的关系映射 2ssh免登录 3防火墙关闭 4时间配置 5快捷键设置可选 6整体环境变量设置 二Hadoop的环境搭建 1JDK配置 2hadoop配置 21 文件准备 22 环境配置 23 修改配置文件 231 修改 core-si…
简要介绍了SparkSQL与Hive on Spark的区别与联系 一.关于Spark 简介 在Hadoop的整个生态系统中,Spark和MapReduce在同一个层级,即主要解决分布式计算框架的问题. 架构 Spark的架构如下图所示,主要包含四大组件:Driver.Master.Worker和Executor. Spark特点 Spark可以部署在YARN上 Spark原生支持对HDFS文件系统的访问 使用Scala语言编写 部署模型 单机模型:主要用来开发测试.特点:Driver.Mast…
02.体验Spark shell下RDD编程 1.Spark RDD介绍 RDD是Resilient Distributed Dataset,中文翻译是弹性分布式数据集.该类是Spark是核心类成员之一,是贯穿Spark编程的始终.初期阶段,我们可以把RDD看成是Java中的集合就可以了,在后面的章节中会详细讲解RDD的内部结构和工作原理. 2.Spark-shell下实现对本地文件的单词统计 2.1思路 word count是大数据学习的经典案例,很多功能实现都可以归结为是word count…
一.java操作hive 1.启动服务:hiveserver2,让hive开启与外部连接的服务 nohup hiveserver2 1>/dev/null 2>/dev/null &2.加入hive的依赖包 <dependency> <groupId>org.apache.hive</groupId> <artifactId>hive-jdbc</artifactId> <version>2.1.1</ver…
(1)分布式文件系统 随着数据量越来越多,在一个操作系统管辖的范围存不下了,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,因此迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统 .它是一种允许文件通过网络在多台主机上分享的文件系统,可让多机器上的多用户分享文件和存储空间. 而它最主要的特性就是通透性.让实际上是通过网络来访问文件的动作,由程序与用户看来,就像是访问本地的磁盘一般.即使系统中有某些节点脱机,整体来说系统仍然可以持续运作而不会有数据损失 分布式文件管理系…
Spark shell是一个特别适合快速开发Spark原型程序的工具,可以帮助我们熟悉Scala语言.即使你对Scala不熟悉,仍然可以使用这个工具.Spark shell使得用户可以和Spark集群交互,提交查询,这便于调试,也便于初学者使用Spark. 感受到Spark shell是如此的方便,因为它很大程度上基于Scala REPL(Scala 交互式shell,即Scala解释器),并继承了Scala REPL(读取-求值-打印-循环)(Read-Evaluate-Print-Loop)…
基于CDH5.x 下面使用eclipse 操作hive .使用java通过jdbc连接HIVESERVICE 创建表 import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.SQLException; import java.sql.Statement; /** * Created by Sebastian on 2016/10/25. * */ p…
Hadoop读书笔记(一)Hadoop介绍:http://blog.csdn.net/caicongyang/article/details/39898629 1.shell操作 1.1全部的HDFS shell操作命名能够通过hadoop fs获取: [root@hadoop ~]# hadoop fs Usage: java FsShell            [-ls <path>]            [-lsr <path>]            [-du <…
一个.hadoop1.1.0演示 hadoop它适合于大容量数据存储和分布式计算平台 hadoop核心由hdfs和mapreduce组成 hdfs这是一个主从结构,仅有一个.是namenode:从节点有非常多个 分布式文件系统与HDFS (HDFS体系结构与基本概念) Distributed File System 数据量越来越多,在一个操作系统管辖的范围存不下了,那么就分配到很多其它的操作系统管理的磁盘中.可是不方便管理和维护,因此迫切须要一种系统来管理多台机器上  的文件,这就是分布式文件管…