题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4004 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示(1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备. 对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(…
BZOJ严重卡精,要加 $long$  $double$ 才能过. 题意:求权和最小的极大线性无关组. 之前那个方法解的线性基都是基于二进制拆位的,这次不行,现在要求一个适用范围更广的方法. 考虑贪心:将向量组按照代价从小到大排序,依次考虑加入每一组向量,如果能被表示出来就加,表示不出来就不加. 你可能会举出一个反例:按照权值从小到大排序后要加入向量 $x,$ 但是后面有若干向量 $a,b,c,d...$ 能表示出 $x,$ 而 $x$ 却表示不出它们,你可能会说最优解法是加入后面那几个,而不加…
和前两(一)题一样,不过不是异或方程组了..... 然后bzoj的新数据是用来卡精度的吧..... 所有只好在模意义下做啦 只是巨慢无比 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <bitset> using namespace std; typedef long lon…
思路: 先算一下每条边经过次数的期望 转化为每个点经过次数的期望 边的期望=端点的期望/度数 统计一下度数 然后高斯消元 贪心附边权--. //By SiriusRen #include <cmath> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; #define eps 1e-10 int n,m,d[250050];double a[505][…
题意; 有n个装备,每个装备有m个属性,每件装备的价值为cost. 小哥,为了省钱,如果第j个装备的属性可以由其他准备组合而来.比如 每个装备属性表示为, b1, b2.......bm . 它可以由其他2个装备组合而成,则 b1=k1*a1+h1*c1.  b2=k1*a2+h2*c1.......bm=km*am+hm*cm这样的话,把属性看做是向量,是不是相当于2个m维度的向量,线性的表示了第三个向量呢? 那么,题目的意思就是在n个向量中,找出一组基,并且这一组基的价值和最小. 这相当于把…
传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 不难看出题目讲的就是线性基 这种最小化权值的问题一般都是贪心的,就是按价值从低到高考虑每一个是否能选 据说贪心的证明得用拟阵我不会 据说这题是实数意义下的线性基我还是不会……据说得用高斯消元…… 所以直接上代码好了…… //minamoto #include<cstdio> #include<algorithm> #include<cmath> #define N 505 #define eps 1e-6 #defin…
题目传送门 装备购买 格式难调,题面就不放了. 分析: 一句话,有$n$件物品,每件物品有$m$个属性和一个花费值,如果一个装备的属性值可以由其他装备的属性值改变系数后组合得到那就不买,求购买最多装备情况下的最小花费. 这是一道实数线性基的模板,实数线性基和平常常见的二进制线性基区别不大,只是用到了高斯消元的思想来实现,具体还是看代码吧. Code: //It is made by HolseLee on 4th Oct 2018 //Luogu.org P3265 #include<cmath…
假如我们知道了每条边经过的期望次数,则变成了一个显然的贪心.现在考虑如何求期望次数. 由于走到每个点后各向等概率,很显然一条边的期望次数可以与它的两个端点的期望次数,转化为求点的期望次数 考虑每个点对另个点的贡献,得到方程组,暴力高斯消元 注意走到最后一个点就结束了,所以相当于它不能有出边 #include <bits/stdc++.h> #define eps 1e-6 using namespace std; const int N = 1005; double a[N][N]; int…
好吧刚开始不知道自己在写什么,,,后来写了线性方程组,又过了一天一上午终于明白了... 当然题意很显然:求代价最小的极大线性无关组. 那就高斯消元(好吧刚开始我不会用它来解这道题qwq) 第一个循环是枚举消哪个元,即i: 然后去找有系数且代价最小的一行,特别地,如果所有行都没有系数,那么他就是自由元..不计入答案: 然后就消就好了... #include<cstdio> #include<iostream> #define R register int using namespac…
装备购买 题目 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着 怎样才能花尽量少的钱买尽量多的装备.对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是 说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的必要了.严格的定义是,如果 脸哥买了 z…
[BZOJ4004][JLOI2015]装备购买 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备.对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件…
题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备.对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的必要了.严格的定义是,如果脸哥买了 zi1,...…
[JLOI2015]装备购买 \(solution:\) 首先这道题的题面已经非常清晰的告诉我们这就是线性空间高斯消元的一道题(可以用某些装备来表示另一件装备,这已经不能再明显了),只是这道题要求我们求出花费最小的方案,这个我们可以直接贪心,如果有多个装备可以匹配某一个属性,那么我们选价值最小的那一个(这个可以用线性空间的定义证明),价值大的尽量往后再选(选到最后剩下一些价格大的不买即可) \(code:\) #include<iostream> #include<cstdio>…
Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备.对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的必要了.严格的定义是,如果脸哥买了…
脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量z[i]=(ai,1,ai,2,..,ai,m)z[i]=(ai,1,ai,2,..,ai,m) 表示,每个装备需要花费 cici. 现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备. 对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的必要了. 严格的定义是,如果脸哥买了 z[i1],z[i…
一个物品可以被其他物品表出,说明另外的每个物品看成矩阵的一个行向量可以表出该物品代表的行向量. 于是构造矩阵,求最多选多少个物品,就是尽可能用已有的物品去表示,相当于去消去一些没必要物品, 类似于xor的线性基,这里是实数的线性基. 通过高斯消元不断消除,看消出几行全是零的即可.也就是看这个线性空间基底的维数或者说矩阵的秩. 但是本题还要选的东西花费最少.可以考虑每次消元时,选择一行代表的物品花费最小的行向量来消剩下的(贪心策略). 如果不选这个,那么之后选出的若干个,如果真的可以表出这个的话,…
线性空间:是由一组基底构成的所有可以组成的向量空间 对于一个n*m的矩阵,高斯消元后的i个主元可以构成i维的线性空间,i就是矩阵的秩 并且这i个主元线性无关 /* 每个向量有权值,求最小权极大线性无关组 本题是使用贪心策略的高斯消元 由输入给出的n个物品,每个物品有m种属性,和价格price 如果a物品的属性可以由其他已有物品的属性组合出,那么a可以不必购买 问最少花掉多少钱,使得所有物品都可以组合出 首先构建n*m矩阵,然后高斯消元 在求第i个主元时,取价格最小的那个即可 可用反证法证明 */…
传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次数(我们认为经过表示需要从这个点走出去,所以$f_N=0$),考虑到一条边$(u,v)$经过次数的期望为$\frac{f_u}{du_u}+\frac{f_v}{du_v}$,我们只需要求出$f$数组就可以求出每一条边对应的期望经过次数了. 对于$f$数组,类似于$DP$,我们可以列出一系列式子:$…
一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和. 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小. 总分的期望值=每条边的期望经过次数*边的编号 之和. 不论我们如何编号,每条边的期望经过次数是不会变的,要使得边权和的期望最小,只需要贪心地使期望次数和边权倒序对应即可.…
考虑让总期望最小,那么就是期望经过次数越多的边贪心地给它越小的编号. 怎么求每条边的期望经过次数呢?边不大好算,我们考虑计算每个点的期望经过次数f[x],那么一条边的期望经过次数就是f[x]/d[x]+f[y]/d[y],d为度. 点的期望经过次数就很好算啦~ 注意1一开始已经经过了1次,于是f[1]=sigma(f[to]/d[to)+1,到n之后就结束,所以到n的边的期望次数其实不由n决定,那直接把f[n]设为0,而且到n之后就结束,所有点是不能算从n来的边的,但是f[n]为0,所以就无所谓…
点此看题面 大致题意: 一个无向连通图,小\(Z\)从\(1\)号顶点出发,每次随机选择某条边走到下一个顶点,并将\(ans\)加上这条边的编号,走到\(N\)号顶点时结束.请你对边进行编号,使总分期望值最小. 一个贪心的思想 由于贪心的思想,我们肯定是给期望访问次数最大的边编号为\(1\),第二大的编号为\(2\),第三大的编号为\(3\),以此类推. 那么我们应该怎么求出边的期望呢? 由于边的期望可以由点的期望转化得来,因此只要求出了点的期望,就能求出边的期望. 那么怎么求出点的期望呢? 这…
4004: [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 337  Solved: 139[Submit][Status][Discuss] Description 脸 哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,…
BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示  (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着 怎样才能花尽量少的钱买尽量多的装备.对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是 说脸哥可以利用手上的这些装备组合出这件装备的效…
https://www.lydsy.com/JudgeOnline/problem.php?id=4004 https://www.luogu.org/problemnew/show/P3265 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备.…
[JLOI2015]装备购买 题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 nn 件装备,每件装备有 \(m\) 个属性,用向量 \(\mathbf{z_i}\)=\((a_1, \ldots ,a_j, \ldots , a_m)\) 表示 \(1 \leq i \leq n\), \(1 \leq j \leq m\),每个装备需要花费 \(c_i\) ,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备.对于脸哥来说,如果一件装备的属性能用购买的其他…
题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备. 对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的 必要了.严格的定义是,如果脸哥买了 zi1,.…
颓了十天回来做题果然…… 感觉还是很有收获的,这两以前都没学过 bzoj1013: [JSOI2008]球形空间产生器sphere poj1830(upd) 之前做得很烂还被 D飞*2 了..重做一次 对于一个灯,把能把它点亮的其他灯设为1,然后高斯消元. 注意在这里的系数只是一个判断的手段,判断是否受到影响,并不是参与运算的(之前纠结了很久) 用二进制状压判断无解多解比较方便.(之前直接判当前位是不是0直接break错的一逼) #include<cstdio> #include<ios…
高斯消元 目录 高斯消元 ACWing207. 球形空间产生器(点击访问) 求解思路 代码 ACWing208. 开关问题(点击访问) 思路 代码 总结 欣赏 线性空间 定义 ACWing209. 装备购买 代码 总结: AcWing210. 异或运算 思路:注意线性空间的推广! DEBUG总结 高斯消元对应的矩阵有两种: 常规的线性方程组 异或操作(不需要乘上一个数再相减,直接异或即可) 概念理解起来不太费力,重点是代码实现. ACWing207. 球形空间产生器(点击访问) 这道题目重点是考…
题目链接 看这道题之前,以为线性基只是支持异或的操作... 那么,我认为这道题体现出了线性基的本质: 就是说如何用最小的一个集合去表示所有出现的装备. 我们假设已经会使用线性基了,那么对于这道题该怎么办呢? 显然,根据贪心的思想,我们先把这些装备按照 \(cost\) 也就是花费从小向大排序. 我们从左往右 \(O(n)\) 扫一遍,如果可以插入线性基就插入然后加上答案的贡献. 如果不能插入,就一定不会造成贡献,这一点是很显然的. 所以,现在的关键问题是如何构建线性基. 其实我认为并没有那么困难…
275. To xor or not to xor   The sequence of non-negative integers A1, A2, ..., AN is given. You are to find some subsequence Ai 1, Ai 2, ..., Ai k (1 <= i 1 < i 2 < ... < i k<= N) such, that Ai 1 XOR Ai 2 XOR ... XOR Ai k has a maximum valu…