题面 传送门 前置芝士 \(BSGS\) 什么?你不会\(BSGS\)?百度啊 原根 对于素数\(p\)和自然数\(a\),如果满足\(a^x\equiv 1\pmod{p}\)的最小的\(x\)为\(p-1\),那么\(a\)就是\(p\)的一个原根 离散对数 对于素数\(p\),以及\(p\)的一个原根\(g\),定义\(y\)为\(x\)的离散对数,当且仅当\(g^y\equiv x\pmod{p}\),记\(y\)为\(ind_g x\).不难发现原数和离散对数可以一一对应.也不难发现离…
题目链接:Recursive sequence 题意:给出前两项和递推式,求第n项的值. 题解:递推式为:$F[i]=F[i-1]+2*f[i-2]+i^4$ 主要问题是$i^4$处理,容易想到用矩阵快速幂,那么$i^4$就需要从$(i-1)$转移过来. $ i^4 = (i-1)^4 + 4*(i-1)^3 + 6*(i-1)^2 + 4*(i-1) + 1$ $f_i$ $f_{i-1}$ $i^4$ $i^3$ $i^2$ $i$ $1$ = $f_{i-1}$ $f_{i-2}$ $(i…
题目 Farmer John likes to play mathematics games with his N cows. Recently, they are attracted by recursive sequences. In each turn, the cows would stand in a line, while John writes two positive numbers a and b on a blackboard. And then, the cows woul…
传送门 好久没写数论题了写一次调了1h 首先发现递推式是一个乘方的形式,线性递推和矩阵快速幂似乎都做不了,那么是否能够把乘方运算变成加法运算和乘法运算呢? 使用原根!学过\(NTT\)的都知道\(998244353\)的原根\(G=3\). 使用原根之后,可以得到一个等价的新递推式:\(G^{g_i} = \prod\limits _ {j=1}^k G^{g_{i - j} \times b_j} \mod 998244353(G^{g_i} \equiv f_i\mod 998244353)…
http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:给出 a,b,n,递推出 f(n) = f(n-1) + f(n-2) * 2 + n ^ 4. f(1) = a, f(2) = b. 思路:在比赛时候知道是矩阵快速幂,可是推不出矩阵.那个n^4不知道怎么解决.结束后问其他人才知道要构造一个7 * 7的矩阵,而不是3 * 3的.. 转自:http://blog.csdn.net/spring371327/article/details/5297…
BUPT2017 wintertraining(15) #6F 题意 \(f(1)=a,f(2)=b,f(i)=2*(f(i-2)+f(i-1)+i^4)\) 给定n,a,b ,\(N,a,b < 2^{31}\),求f(n)% 2147493647. 题解 \[ f[i]=(f[i-1]+2*f[i-2]+i^4)*2\\ i^4=(i-1)^4+4*(i-1)^3+6*(i-1)^2+4*(i-1)+1 \] 我们可以构造出矩阵乘法 \[ \left[ \begin{matrix} f_{i…
思路:一开始不会n^4的推导,原来是要找n和n-1的关系,这道题的MOD是long long 的,矩阵具体如下所示 最近自己总是很坑啊,代码都瞎吉坝写,一个long long的输入写成%d一直判我TLE,一度怀疑矩阵快速幂地复杂度orz 代码: #include<set> #include<cstring> #include<cstdio> #include<algorithm> #define ll long long const int maxn = 7…
题目链接:CF1106F Lunar New Year and a Recursive Sequence 大意:已知\(f_1,f_2,\cdots,f_{k-1}\)和\(b_1,b_2,\cdots,b_k\),且有递推关系 \[ f_i=(\prod_{j=1}^kf_{i-j}^{b_j})\text%p \] 对于所有\(i>k\)均成立,给出\(f_n=m\),求\(f_k\),\(p=998244353\) 分析: 数论板子大集合 首先很显然有\(f_n=f_k^{q}\),于是考…
Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. Given A, B, and n, you are to calculate the value of f(n).   Input The input consists of multiple test cases. Each test case contains…
Problem Description Holion August will eat every thing he has found. Now there are many foods,but he does not want to eat all of them at once,so he find a sequence. fn=⎧⎩⎨⎪⎪1,ab,abfcn−1fn−2,n=1n=2otherwise He gives you 5 numbers n,a,b,c,p,and he will…
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6395 Sequence Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 2564    Accepted Submission(s): 999 Problem Description Let us define a sequence as…
CF - 392 C. Yet Another Number Sequence 题目传送门 这个题看了十几分钟直接看题解了,然后恍然大悟,发现纸笔难于描述于是乎用Tex把初始矩阵以及转移矩阵都敲了出来 \(n\le 1e17\) 这个数量级求前缀和,发现递推关系之后矩阵快速幂是可以求出来的,所以就尝试把\(A_i(k)\) 的递推式求出来. \[A_{i-1}(k) = F_{i-1} * (i-1) ^ k\\ A_{i-2}(k) = F_{i-2} * (i-2) ^ k \] \[\be…
已知\(f_i = \prod \limits_{j = 1}^k f_{i - j}^{b_j}\;mod\;998244353\),并且\(f_1, f_2, ..., f_{k - 1} = 1\),\(f_k = a\),已知\(f_n = m\),试求\(a\) 易知\(f_n = f_k^p\) 对于\(p\)满足递推式\(g[i] = \sum \limits_{j = 1}^k b[j] * g[i - j]\) 这是常系数线性递推,由于\(k \leq 100\),因此矩阵快速…
题意 设 $$f_i = \left\{\begin{matrix}1 , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  i < k\\ \prod_{j=1}^k f_{i-j}^{b_j} \ mod \ p, \ \ \ \ \ i > k\end{matrix}\right.$$ 求 $f_k$($1 \leq f_k < p$),使得 $f_m = n$.($1 \leq k\leq 100$) 分析 $f_n$ 可以表示…
A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. Given A, B, and n, you are to calculate the value of f(n). InputThe input consists of multiple test cases. Each test case contains 3 integers A,…
        Holion August will eat every thing he has found. Now there are many foods,but he does not want to eat all of them at once,so he find a sequence. fn=⎧⎩⎨⎪⎪1,ab,abfcn−1fn−2,n=1n=2otherwisefn={1,n=1ab,n=2abfn−1cfn−2,otherwise He gives you 5 numbe…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5667 费马小定理: 假如p是质数,且gcd(a,p)=1,那么 a^(p-1)≡1(mod p). 即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1. 注意这里使用快速幂的时候要根据费马小定理对p-1取模.还有注意a%p=0的情况. 递推式:f(n)=f(n-1)*c+f(n-2)+1 非齐次. 构造矩阵: |c | | | | | 初始…
题目 第一次做是看了大牛的找规律结果,如下: //显然我看了答案,循环节点是48,但是为什么是48,据说是高手打表出来的 #include<stdio.h> int main() { ],a,b,i,n; f[]=;f[]=; while(scanf("%d%d%d",&a,&b,&n)!=EOF) { &&b==&&n==)break; ;i<;i++) { f[i]=(a*f[i-])%+(b*f[i-])%…
题目 和 LightOj 1096 - nth Term 差不多的题目和解法,这道相对更简单些,万幸,这道比赛时没把模版给抽风坏. #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; int num,mod; struct matrix { ][]; }origin,answ; matrix multiply(matrix x,matrix y)//矩阵乘法 { ma…
典型的两道矩阵快速幂求斐波那契数列 POJ 那是 默认a=0,b=1 UVA 一般情况是 斐波那契f(n)=(n-1)次幂情况下的(ans.m[0][0] * b + ans.m[0][1] * a): //POJ #include <cstdio> #include <iostream> using namespace std; ; struct matrix { ][]; }ans, base; matrix multi(matrix a, matrix b) { matrix…
题目链接 #include<bits/stdc++.h> using namespace std; #define e exp(1) #define pi acos(-1) #define mod 1000000007 #define inf 0x3f3f3f3f #define ll long long #define ull unsigned long long #define mem(a,b) memset(a,b,sizeof(a)) int gcd(int a,int b){retu…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1005 题意: 数列{f(n)}: f(1) = 1, f(2) = 1, f(n) = ( A*f(n-1) + B*f(n-2) ) MOD 7 给定A.B.n,求f(n). (1<=n<=100,000,000) 题解: 大水题~ (*/ω\*) 矩阵快速幂. 初始矩阵start: 特殊矩阵special: 所求矩阵ans: ans = start * special^(n-1) ans的第一…
传送门 数列的特征方程和特征根老师上课好像讲过然而我没听--以后老师上数学课要认真听了QAQ 设\(x=\frac{1+\sqrt{5}}{2},y=\frac{1-\sqrt{5}}{2}\),那么\(x,y\)是\(t^2=t+1\)的两个解,也就是数列\(F_n=F_{n-1}+F_{n-2}\)的特征根 关于特征根是个什么神仙--可以这样理解,假设数列有\(F_n=c_1F_{n-1}+c_2F_{n-2}\),则方程的特征根\(x_1,x_2\)为\(x^2=c_1x+c_2\)的两个…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5667 题意: Lcomyn 是个很厉害的选手,除了喜欢写17kb+的代码题,偶尔还会写数学题.他找到了一个数列: fn= 1,ab,abfcn−1fn−2,n=1n=2otherwise 给定各个数,求fn. 分析: 可以发现最后都是a的倍数,这样我们让fn对a取对数,令tn=logafn方程就转化为b+ctn−1+tn−2,这样利用矩阵快速幂直接算幂数,最后快速幂一下就可以了. 注意: 由费马小…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6395 因为题目数据范围太大,又存在递推关系,用矩阵快速幂来加快递推. 每一项递推时  加的下取整的数随着n变化,但因为下取整有连续性(n一段区间下取整的数是相同的),可以分块,相同的用矩阵快速幂加速 想了好久..如果最小的开始的值是[p/i]的数为i,那连续的一段长度是[p/(p/i)]-i+1,但为什么分段数是根号n级别啊?... 套矩阵快速幂,时间复杂度O(sqrt(n) * log(n)) ⎧…
题意:已知f(0) = a,f(1) = b,f(n) = f(n − 1) + f(n − 2), n > 1,求f(n)的后m位数. 分析:n最大为109,矩阵快速幂求解,复杂度log2(109). #include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include&…
我诈尸啦! 高三退役选手好不容易抛弃天利和金考卷打场CF,结果打得和shi一样--还因为queue太长而unrated了!一个学期不敲代码实在是忘干净了-- 没分该没分,考题还是要订正的 =v= 欢迎阅读本题解! P.S. 这几个算法我是一个也想不起来了 TAT 题目链接 Codeforces 1106F Lunar New Year and a Recursive Sequence 新年和递推数列 题意描述 某数列\(\{f_i\}\)递推公式:\[f_i = (\prod_{j=1}^kf_…
Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 249    Accepted Submission(s): 140 Problem Description Farmer John likes to play mathematics games with his N cows. Recently, t…
题目链接:传送门 题目: Recursive sequence Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): Accepted Submission(s): Problem Description Farmer John likes to play mathematics games with his N cows. Recently, they are attracted…
题目传送门 题目描述:给出一个数列的第一项和第二项,计算第n项. 递推式是 f(n)=f(n-1)+2*f(n-2)+n^4. 由于n很大,所以肯定是矩阵快速幂的题目,但是矩阵快速幂只能解决线性的问题,n^4在这个式子中是非线性的,后一项和前一项没有什么直接关系,所以模拟赛的时候想破头也不会做. 这里要做一个转换,把n^4变成一个线性的,也就是和(n-1)^4有关系的东西,而这个办法就是: n^4=(n-1+1)^4=(n-1)^4+4*(n-1)^3+6*(n-1)^2+4*(n-1)^1+(…