[Web服务] 为运行在不同平台和框架之上的软件提供了互操作的标准方式.良好的互操作性和可扩展性.消息采用自包含文档的形式. ——解决异构系统之间交互.解决异构系统通信问题:  1.通过XML,JSON,字符串进行多语言的通讯. 2.共享数据库. 3.共享文件. 4.使用消息中间件.   Axis互通信比较好,对其他语言访问的兼容性比较多: CXF非常容易的整合到Spring架构中:   [REST风格] Representational State Transfer,表述性状态转移.Web应用…
http://mp.weixin.qq.com/s?__biz=MjM5NDMwNjMzNA==&mid=2651805828&idx=1&sn=2f413828d1fdc6a64bdbb25c51508dfc&scene=2&srcid=0519iChOETxAx0OeGoHnm7Xk&from=timeline&isappinstalled=0#rd Spark性能优化指南——基础篇 2016-05-18 优才网 前言 在大数据计算领域,Spar…
本文转自:http://tech.meituan.com/spark-tuning-basic.html 感谢原作者 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算…
[转]Spark性能优化指南——基础篇 http://mp.weixin.qq.com/s?__biz=MjM5NDMwNjMzNA==&mid=2651805828&idx=1&sn=2f413828d1fdc6a64bdbb25c51508dfc&scene=2&srcid=0519iChOETxAx0OeGoHnm7Xk&from=timeline&isappinstalled=0#rd Spark性能优化指南——基础篇 优才网 2016-05…
最近一直在看的一本书是<Android 应用程序开发权威指南>(第四版),十分推荐.书中讲到了一些用户界面设计的规范,对于初学者我认为十分有必要,在这里码给大家,希望对我们都有用. 在我们设计用户界面的时候,我们总是很多时候通过提供自定义应用资源和代码的方法来支持特定设备配置,但有一点特别需要注意的,那就是我们必须保证我们的设计方案有足够的灵活性来应对各种变化,让他们变得简单,而不是过度的挤压他们,一下是我的一些建议: 设计正常尺寸屏幕和中等分辨率的app.随着时间的推移,设备有着向更大尺寸,…
下载地址 Hadoop权威指南(中文版,第2版) http://download.csdn.net/download/u011000529/5726789 (友情提示:请点击右下的 “联通下载” 或者 “电信下载”图片均可以下载) 其他上传的书籍资源请访问: http://download.csdn.net/user/u011000529…
转自:http://tech.meituan.com/spark-tuning-basic.html?from=timeline 前言 开发调优 调优概述 原则一:避免创建重复的RDD 原则二:尽可能复用同一个RDD 原则三:对多次使用的RDD进行持久化 原则四:尽量避免使用shuffle类算子 原则五:使用map-side预聚合的shuffle操作 原则六:使用高性能的算子 原则七:广播大变量 原则八:使用Kryo优化序列化性能 原则九:优化数据结构 资源调优 调优概述 Spark作业基本运行…
前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更快.性能更高. 然而,通过Spark开发出高性能的大数据计算作业,并不是那么简单的.如果没有对Spar…
前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更快.性能更高. 然而,通过Spark开发出高性能的大数据计算作业,并不是那么简单的.如果没有对Spar…
前言 开发调优 调优概述 原则一:避免创建重复的RDD 原则二:尽可能复用同一个RDD 原则三:对多次使用的RDD进行持久化 原则四:尽量避免使用shuffle类算子 原则五:使用map-side预聚合的shuffle操作 原则六:使用高性能的算子 原则七:广播大变量 原则八:使用Kryo优化序列化性能 原则九:优化数据结构 资源调优 调优概述 Spark作业基本运行原理 资源参数调优 写在最后的话 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的…