BP算法很难调试,一般情况下会隐隐存在一些小问题,比如(off-by-one error),即只有部分层的权重得到训练,或者忘记计算bais unit,这虽然会得到一个正确的结果,但效果差于准确BP得到的结果. 有了cost function,目标是求出一组参数W,b,这里以表示,cost function 暂且记做.假设 ,则 ,即一维情况下的Gradient Descent: 根据6.2中对单个参数单个样本的求导公式: 可以得到每个参数的偏导数,对所有样本累计求和,可以得到所有训练数据对参数…
BP算法很难调试,一般情况下会隐隐存在一些小问题,比如(off-by-one error),即只有部分层的权重得到训练,或者忘记计算bais unit,这虽然会得到一个正确的结果,但效果差于准确BP得到的结果. 有了cost function,目标是求出一组参数W,b,这里以表示,cost function 暂且记做.假设 ,则 ,即一维情况下的Gradient Descent: 根据6.2中对单个参数单个样本的求导公式: 可以得到每个参数的偏导数,对所有样本累计求和,可以得到所有训练数据对参数…
面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线.比如下图的样本只是在2维情形下的示例,假设有100维度,即特征数目是100,若使用logistic来做分类,对于这种线性不可分的情形,要对特征进行各种形式的组合映射,然后用映射后扩充的特征进行分类,可能会增加大量的参数,计算复杂性可想而知,而且可能会造成严重的over-fitting,可见logistic分类的局限性,下面引入NN.…
今天得主题是BP算法.大规模的神经网络可以使用batch gradient descent算法求解,也可以使用 stochastic gradient descent 算法,求解的关键问题在于求得每层中每个参数的偏导数,BP算法正是用来求解网络中参数的偏导数问题的. 先上一张吊炸天的图,可以看到BP的工作原理: 下面来看BP算法,用m个训练样本集合来train一个神经网络,对于该模型,首先需要定义一个代价函数,常见的代价函数有以下几种: 1)0-1损失函数:(0-1 loss function)…
softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法步骤: 首先,加载数据集{x(1),x(2),x(3)...x(m)}该数据集为一个n*m的矩阵,然后初始化参数 θ ,为一个k*n的矩阵(不考虑截距项):       首先计算,该矩阵为k*m的: 然后计算: 该函数参数可以随意+-任意参数而保持值不变,所以为了防止 参数 过大,先减去一个常量,防…
一大波matlab代码正在靠近.- -! sparse autoencoder的一个实例练习,这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse autoencoder的方法训练出一个隐含层网络所学习到的特征.该网络共有3层,输入层是64个节点,隐含层是25个节点,输出层当然也是64个节点了. main函数,  分五步走,每个函数的实现细节在下边都列出了. %%==========================…
Sparse AutoEncoder是一个三层结构的网络,分别为输入输出与隐层,前边自编码器的描述可知,神经网络中的神经元都采用相同的激励函数,Linear Decoders 修改了自编码器的定义,对输出层与隐层采用了不用的激励函数,所以 Linear Decoder 得到的模型更容易应用,而且对模型的参数变化有更高的鲁棒性. 在网络中的前向传导过程中的公式: 其中 a(3) 是输出. 在自编码器中, a(3) 近似重构了输入 x = a(1) . 对于最后一层为 sigmod(tanh) 激活…
对于加深网络层数带来的问题,(gradient diffuse  局部最优等)可以使用逐层预训练(pre-training)的方法来避免 Stack-Autoencoder是一种逐层贪婪(Greedy layer-wise training)的训练方法,逐层贪婪的主要思路是每次只训练网络中的一层,即首先训练一个只含一个隐藏层的网络,仅当这层网络训练结束之后才开始训练一个有两个隐藏层的网络,以此类推.在每一步中,把已经训练好的前  层固定,然后增加第  层(也就是将已经训练好的前  的输出作为输入…
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Gradient Checking Welcome to the final assignment for this week! In this assignment you will learn to implement and use gradient checking. You are part of a team working to make mobile payments available globally, and…
Gradient Checking Welcome to this week's third programming assignment! You will be implementing gradient checking to make sure that your backpropagation implementation is correct. By completing this assignment you will: - Implement gradient checking…