前面几篇文章讲到了卷积神经网络CNN,但是对于它在每一层提取到的特征以及训练的过程可能还是不太明白,所以这节主要通过模型的可视化来神经网络在每一层中是如何训练的.我们知道,神经网络本身包含了一系列特征提取器,理想的feature map应该是稀疏的以及包含典型的局部信息.通过模型可视化能有一些直观的认识并帮助我们调试模型,比如:feature map与原图很接近,说明它没有学到什么特征:或者它几乎是一个纯色的图,说明它太过稀疏,可能是我们feature map数太多了(feature_map数太…