最近有个任务:利用 RNN 进行句子补全,即给定一个不完整的句子,预测其后续的字词.本文使用了 Seq2Seq 模型,输入为 5 个中文字词,输出为 1 个中文字词.目录 关于RNN 语料预处理 搭建数据集 搭建模型 训练模型 测试模型 保存/加载模型 1.关于RNN 自被提出以来,循环神经网络(Recurrent Neural Networks,RNN) 在 NLP 领域取得了巨大的成功与广泛的应用,也由此催生出了许多新的变体与网络结构.由于网上有众多资料,在此我也只做简单的讲解了.首先,讲讲…
最近有个任务:利用 RNN 进行句子补全,即给定一个不完整的句子,预测其后续的字词.本文使用了 Seq2Seq 模型,输入为5个中文字词,输出为一个中文字词. 目录 关于RNN 语料预处理 搭建数据集 搭建模型 训练模型 测试模型 保存/加载模型 1.关于RNN 自被提出以来,循环神经网络(Recurrent Neural Networks,RNN) 在 NLP 领域取得了巨大的成功与广泛的应用,也由此催生出了许多新的变体与网络结构.由于网上有众多资料,在此我也只做简单的讲解了.首先,讲讲 RN…
第一部分:从RNN到LSTM 1.什么是RNN RNN全称循环神经网络(Recurrent Neural Networks),是用来处理序列数据的.在传统的神经网络模型中,从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的.但是这种普通的神经网络对于很多关于时间序列的问题却无能无力.例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的.RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关.具体的表现形式为网络会对…
RNN与LSTM 这一部分主要涉及循环神经网络的理论,讲的可能会比较简略. 什么是RNN RNN全称循环神经网络(Recurrent Neural Networks),是用来处理序列数据的.在传统的神经网络模型中,从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的.但是这种普通的神经网络对于很多关于时间序列的问题却无能无力.例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的.RNN之所以称为循环神经网路,即一个序列当前的输出与…
  在做数据预处理的时候,超额收益率是股票行业里的一个专有名词,指大于无风险投资的收益率,在我国无风险投资收益率即是银行定期存款. pycharm + anaconda3.6开发,涉及到的第三方库有pandas,numpy,matplotlib,skllearn. Python代码的基本功能注释里也写了一些.这三部分代码所实现的功能是读取数据,并对数据进行预处理.我已经把最原始的数据整理好放在了excel表格里,并且将第一个月的全部股票的参数放在一个excel里. #6 print('选择模型'…
Given inorder and postorder traversal of a tree, construct the binary tree. Note:  You may assume that duplicates do not exist in the tree. 利用中序和后序遍历构造二叉树,要注意到后序遍历的最后一个元素是二叉树的根节点,而中序遍历中,根节点前面为左子树节点后面为右子树的节点.例如二叉树:{1,2,3,4,5,6,#}的后序遍历为4->5->2->6-&…
前言 本系列教程为pytorch官网文档翻译.本文对应官网地址:https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html 系列教程总目录传送门:我是一个传送门 本系列教程对应的 jupyter notebook 可以在我的Github仓库下载: 下载地址:https://github.com/Holy-Shine/Pytorch-notebook 本教程我们将会搭建一个网络来将法语翻译成英语. [KE…
温馨提示:本案例只作为学习研究用途,不构成投资建议. 比特币的价格数据是基于时间序列的,因此比特币的价格预测大多采用LSTM模型来实现. 长期短期记忆(LSTM)是一种特别适用于时间序列数据(或具有时间 / 空间 / 结构顺序的数据,例如电影.句子等)的深度学习模型,是预测加密货币的价格走向的理想模型. 本文主要写了通过LSTM进行数据拟合,从而预测比特币的未来价格. import需要使用的库 import pandas as pd import numpy as np from sklearn…
RNN RNN的发源: 单层的神经网络(只有一个细胞,f(wx+b),只有输入,没有输出和hidden state) 多个神经细胞(增加细胞个数和hidden state,hidden是f(wx+b),但是依然没有输出) 这里RNN同时和当前的输入有关系,并且是上一层的输出有关系. 初步的RNN(增加输出softmax(Wx+b),输出和hidden state的区别是对wx+b操作的函数不同) 备注多层的神经细胞和全连接层的区别: 全连接层只有:输入.输出和权重矩阵, 如下图. 初步的RNN和…
http://spaces.ac.cn/archives/3924/ 关于字标注法 上一篇文章谈到了分词的字标注法.要注意字标注法是很有潜力的,要不然它也不会在公开测试中取得最优的成绩了.在我看来,字标注法有效有两个主要的原因,第一个原因是它将分词问题变成了一个序列标注问题,而且这个标注是对齐的,也就是输入的字跟输出的标签是一一对应的,这在序列标注中是一个比较成熟的问题:第二个原因是这个标注法实际上已经是一个总结语义规律的过程,以4tag标注为为例,我们知道,“李”字是常用的姓氏,一半作为多字词…