/** Spark SQL源代码分析系列文章*/ 接上一篇文章Spark SQL Catalyst源代码分析之Physical Plan.本文将介绍Physical Plan的toRDD的详细实现细节: 我们都知道一段sql,真正的运行是当你调用它的collect()方法才会运行Spark Job,最后计算得到RDD. lazy val toRdd: RDD[Row] = executedPlan.execute() Spark Plan基本包括4种操作类型,即BasicOperator基本类型…
从决定写Spark SQL文章的源代码分析,到现在一个月的时间,一个又一个几乎相同的结束很快,在这里也做了一个综合指数,方便阅读,下面是读取顺序 :) 第一章 Spark SQL源代码分析之核心流程 第二篇 Spark SQL Catalyst源代码分析之SqlParser 第三篇 Spark SQL Catalyst源代码分析之Analyzer 第四篇 Spark SQL Catalyst源代码分析之TreeNode Library 第五篇 Spark SQL Catalyst源代码分析之Op…
/** Spark SQL源代码分析系列文章*/ 前面讲到了Spark SQL In-Memory Columnar Storage的存储结构是基于列存储的. 那么基于以上存储结构,我们查询cache在jvm内的数据又是怎样查询的,本文将揭示查询In-Memory Data的方式. 一.引子 本例使用hive console里查询cache后的src表. select value from src 当我们将src表cache到了内存后,再次查询src,能够通过analyzed运行计划来观察内部调…
/** Spark SQL源代码分析系列文章*/ 自从去年Spark Submit 2013 Michael Armbrust分享了他的Catalyst,到至今1年多了,Spark SQL的贡献者从几人到了几十人,并且发展速度异常迅猛,究其原因,个人觉得有下面2点: 1.整合:将SQL类型的查询语言整合到 Spark 的核心RDD概念里.这样能够应用于多种任务,流处理,批处理,包含机器学习里都能够引入Sql.     2.效率:由于Shark受到hive的编程模型限制,无法再继续优化来适应Spa…
/** Spark SQL源码分析系列文章*/ 接上一篇文章Spark SQL Catalyst源码分析之Physical Plan,本文将介绍Physical Plan的toRDD的具体实现细节: 我们都知道一段sql,真正的执行是当你调用它的collect()方法才会执行Spark Job,最后计算得到RDD. lazy val toRdd: RDD[Row] = executedPlan.execute() Spark Plan基本包含4种操作类型,即BasicOperator基本类型,还…
/** Spark SQL源码分析系列文章*/ 前面几篇文章主要介绍的是spark sql包里的的spark sql执行流程,以及Catalyst包内的SqlParser,Analyzer和Optimizer,最后要介绍一下Catalyst里最后的一个Plan了,即Physical Plan.物理计划是Spark SQL执行Spark job的前置,也是最后一道计划. 如图: 一.SparkPlanner 话接上回,Optimizer接受输入的Analyzed Logical Plan后,会有S…
Spark SQL 与传统 DBMS 的查询优化器 + 执行器的架构较为类似,只不过其执行器是在分布式环境中实现,并采用的 Spark 作为执行引擎. Spark SQL 的查询优化是Catalyst,其基于 Scala 语言开发,可以灵活利用 Scala 原生的语言特性很方便进行功能扩展,奠定了 Spark SQL 的发展空间. Catalyst 将 SQL 语言翻译成最终的执行计划,并在这个过程中进行查询优化.这里和传统不太一样的地方就在于, SQL 经过查询优化器最终转换为可执行的查询计划…
概述 一个Spark的Job分为多个stage,最后一个stage会包含一个或多个ResultTask,前面的stages会包含一个或多个ShuffleMapTasks. ResultTask运行并将结果返回给driver application. ShuffleMapTask将task的output依据task的partition分离到多个buckets里.一个ShuffleMapTask相应一个ShuffleDependency的partition,而总partition数同并行度.redu…
1 初始加入设备后.上传Object的详细流程  前几篇博客中,我们讲到环的基本原理即详细的实现过程,加入我们在初始创建Ring是执行例如以下几条命令: •swift-ring-builder object.builder create 5 3 1   •swift-ring-builder object.builder add z1-127.0.0.1:6010/sdb1 100     •swift-ring-builder object.builder add z2-127.0.0.1:6…
DAGScheduler 面向stage的调度层,为job生成以stage组成的DAG,提交TaskSet给TaskScheduler运行. 每个Stage内,都是独立的tasks,他们共同运行同一个compute function,享有同样的shuffledependencies.DAG在切分stage的时候是按照出现shuffle为界限的. private[spark] class DAGScheduler( taskScheduler: TaskScheduler, listenerBus…