洛谷P4219 - [BJOI2014]大融合】的更多相关文章

P4219 [BJOI2014]大融合 题目描述 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的 询问. 输入输出格式 输入格式: 第一行包含两个整数 \(N, Q\),表示星球的数量和操作的数量.星球从 \(1\) 开始编号. 接下来的 \(Q\) 行,每行是如下两种…
Portal Description 初始有\(n(n\leq10^5)\)个孤立的点,进行\(Q(Q\leq10^5)\)次操作: 连接边\((u,v)\),保证\(u,v\)不连通. 询问有多少条简单路径经过边\((u,v)\). Solution 加边用lct,询问结果相当于\(p\)为根时的\((siz[p]-siz[q])\times siz[q]\). 那么如何用lct维护子树大小呢?维护\(isiz[p]\)表示\(p\)在lct上的虚子树大小,\(siz[p]\)表示\(isiz…
LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘积. 掌握了LCT如何维护虚子树信息和后,做法就很清晰了.split(x,y)后,输出x的虚子树和+1与y的虚子树和+1的乘积:或者,(以y为根)输出x的子树总和与y的子树总和减去x的子树总和的乘积. 代码如下(这次我试着写了一个单旋"Spaly",好像常数还小不少......) #inc…
LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘积. 掌握了LCT如何维护虚子树信息和后,做法就很清晰了.split(x,y)后,输出x的虚子树和+1与y的虚子树和+1的乘积:或者,(以y为根)输出x的子树总和与y的子树总和减去x的子树总和的乘积. 代码如下(这次我试着写了一个单旋"Spaly",好像常数还小不少......) #inc…
查询,就相当于先删去这条边,然后查询边的两个端点所在连通块大小,乘起来得到答案,然后再把边加回去 可以用线段树分治做 #pragma GCC optimize("Ofast") #include<cstdio> #include<algorithm> #include<cstring> #include<vector> #include<map> using namespace std; #define fi first #d…
QWQ 这个题目是LCT维护子树信息的经典应用 根据题目信息来看,对于一个这条边的两个端点各自的\(size\)乘起来,不过这个应该算呢? 我们可以考虑在LCT上多维护一个\(xv[i]\)表示\(i\)的虚子树的子树和,然后维护\(sum[i]\)表示\(i\)的虚+实子树之和. 那么对于一个点\(x\),他在原树上的字数大小就应该是$$size = xv[x]+sum[ch[x][1]]+1$$ 这是个经典套路! 对于这个题来说,我们可以通过\(split(x,y)\),然后\(ans\)就…
P4219 [BJOI2014]大融合 对于每个询问$(u,v)$所求的是 ($u$的虚边子树大小+1)*($v$的虚边子树大小+1) 于是我们再开个$si[i]$数组表示$i$的虚边子树大小,维护一下就好辣 #include<iostream> #include<cstdio> #include<cstring> using namespace std; inline void Swap(int &a,int &b){a^=b^=a^=b;} void…
传送门 动态维护森林 显然考虑 $LCT$ 但是发现询问求的是子树大小,比较不好搞 维护 $sum[x]$ 表示节点 $x$ 的子树大小,$si[x]$ 表示 $x$ 的子树中虚儿子的子树大小和 那么 $pushup$ 可以这样写: inline ]]+sum[c[x][]]+si[x]+; } 考虑什么时候 $si$ 会变 首先对于 $rotate,splay$ 因为都是对一条实链搞,所以对虚边没影响 然后考虑 $access$ ,发现边的虚实有改变 原本 $x$ 的右儿子变成另一个节点,那么…
\(\color{#0066ff}{ 题目描述 }\) 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了\(5\)条边.其中,\((3,8)\)这条边的负载是\(6\),因 为有六条简单路径\(2-3-8\),\(2-3-8-7\),\(3-8\),\(3-8-7\),\(4-3-8\),\(4-3-8-7…
题解:原来LCT也能维护子树信息,我太Naive了 用LCT维护当前子树节点个数 具体做法维护siz[x]=当前Splay子树和指向当前Splay子树的虚边所代表的节点个数 auxsiz[x]=指向x节点的虚边代表的节点个数 Link的时候x,y都要makeroot一下(针对我的写法) 然后就在LCT的基础上维护auxsiz即可 #include<iostream> #include<cstdio> #include<cstring> using namespace s…