http://poj.org/problem?id=1006 #include <iostream> #include <cstdio> #include <queue> #include <algorithm> #include <cmath> #include <cstring> #define inf 2147483647 #define N 1000010 #define p(a) putchar(a) #define For…
Hello Kiki Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 247 Accepted Submission(s): 107   Problem Description One day I was shopping in the supermarket. There was a cashier counting coins serio…
Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 103539   Accepted: 32012 Description Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical,…
http://poj.org/problem?id=2891 Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 11970   Accepted: 3788 Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express no…
http://acm.hdu.edu.cn/showproblem.php?pid=1573 X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4439    Accepted Submission(s): 1435 Problem Description 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0],…
分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的数的个数,可以看成若干个同余方程联立成的一次同余方程组.然后我们就可以很自然而然的想到了中国剩余定理.需要注意的是,在处理中国剩余定理的过程中,可能会发生超出LongLong的情况,需要写个类似于快速幂的快速乘法来处理. 吐槽:赛场上不会快速乘,导致疯狂WA,唉,还是太年轻 代码: #include…
X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3921    Accepted Submission(s): 1253 Problem Description 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], …, X mod…
Strange Way to Express Integers Time Limit:1000MS Memory Limit:131072KB 64bit IO Format:%I64d & %I64u Submit Status Practice POJ 2891   Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative i…
中国剩余定理模数不互质的情况主要有一个ax+by==k*gcd(a,b),注意一下倍数情况和最小 https://vjudge.net/problem/POJ-2891 #include <iostream> #include <cstdio> #include <queue> #include <algorithm> #include <cmath> #include <cstring> #define inf 2147483647…
One day I was shopping in the supermarket. There was a cashier counting coins seriously when a little kid running and singing "门前大桥下游过一群鸭,快来快来 数一数,二四六七八". And then the cashier put the counted coins back morosely and count again... Hello Kiki is…
一种不断迭代,求新的求余方程的方法运用中国剩余定理. 总的来说,假设对方程操作.和这个定理的数学思想运用的不多的话.是非常困难的. 參照了这个博客的程序写的: http://scturtle.is-programmer.com/posts/19363.html 这个博客举例说的挺好的:http://blog.csdn.net/mishifangxiangdefeng/article/details/7109217 hdu 3579 Hello Kiki 中国剩余定理(不互质的情况) 对互质的情况…
思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\equiv a_n(mod\ m_n)\end{matrix} \] 在模数互质的情况下,解为 \[ x=\sum_ia_iM_iM_i^{-1}(mod M) \] 其中\(M=\prod_{i}m_i\),\(M_i=\frac{M}{m_i}\),\(M_i^{-1}\)为\(M_i\)在模\(m…
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1}b[j]$ ,$ res$是前$ i-1 $个方程的最小解 则$ res+x*M$ 是前 $i-1 $个方程的通解 那么我们求的就是 $res+x*M ≡ a[i] (mod b[i])$ $<=> x*M - y*b[i] = a[i]-res$ 用exgcd求出的解为 t (当且仅当 gcd…
EXCRT 不保证模数互质 \[\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... \\ x \equiv b_n\ ({\rm mod}\ a_n)\end{cases}\] CRT戳这里 来一手数学归纳法 设已经求出前 \(k - 1\) 组的一个解 \(q\) 设 \(M = \prod_{i = 1}^{k - 1}a_{i}\) 我们知道前 \(k - 1\) 组的通解…
传送门 解题思路 扩展 $crt​$,就是中国剩余定理在模数不互质的情况下,首先对于方程 ​     $\begin{cases} x\equiv a_1\mod m_1\\x\equiv a_2\mod m_2\end{cases}$ 来说,可以将其写为: $\begin{cases} x=k_1*m_1+a_1\\x=k_2*m_2+a_2\end{cases}$ 然后联立方程: ​     $k_1*m_1+a_1=k_2*m_2+a_2$ $\Leftrightarrow -k_1*m_…
题目链接 https://www.luogu.org/problemnew/show/P4777 分析 扩展\(CRT\)就是解决模数不互质的情况,说是扩展\(CRT\),其实都是扩欧... 先来考虑两个方程的情况:\(x \equiv a \mod b\)和\(x \equiv c \mod d\) 由方程1得\(x=tb+a\),代入方程2中得\(tb+a \equiv c \mod d\), 把它变得更像方程:\(t \times b+t' \times d = c-a\) 解得\(t'\…
问题背景   孙子定理是中国古代求解一次同余式方程组的方法.是数论中一个重要定理.又称中国余数定理.一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作<孙子算经>卷下第二十六题,叫做"物不知数"问题,原文如下:   有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数.<孙子算经>中首次提到了同余方程组问题,以及以上具体问题的解法,因此在中文数学文献中也会将中国剩余定理称…
前言: 中国剩余定理又名孙子定理.因孙子二字歧义,常以段子形式广泛流传. 中国剩余定理并不是很好理解,我也理解了很多次. CRT 中国剩余定理 中国剩余定理,就是一个解同余方程组的算法. 求满足n个条件的最小的x. 看起来很麻烦. 先找一个特殊情况:$m_1,m_2,...m_n$两两互质. 这个时候,构造$M=m_1*m_2*...m_n$; 令$M_i=M/m_i$; 所以,构造$n$个数,其中第$i$个数是除$i$之外的其他所有数的倍数,并且第$i$个数$mod m_i =1$ 即:$M_…
引入 常想起在空间里见过的一些智力题,这个题你见过吗: 一堆苹果,\(3\)个\(3\)个地取剩\(1\)个,\(5\)个\(5\)个地取剩\(1\)个,\(7\)个\(7\)个地取剩\(2\)个,苹果最少有几个? 够焦头烂额的(雾 大力算可知至少有16个. 我们把它抽象成数学问题: 求满足 \[\begin{cases}x\equiv1\pmod{3}\\x\equiv1\pmod{5}\\x\equiv2\pmod{7}\end{cases}\] 的最小正整数\(x\). 感性地猜到有一个长…
X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 8354    Accepted Submission(s): 3031 Problem Description 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], -, X mo…
题目链接:http://poj.org/problem?id=2891 题目大意: 求解同余方程组,不保证模数互质 题解: 扩展中国剩余定理板子题 #include<algorithm> #include<cstring> #include<cstdio> #include<iostream> #include<cmath> using namespace std; typedef long long ll; +; int k; ll m[N],…
中国剩余定理 CRT 推导 给定\(n\)个同余方程 \[ \left\{ \begin{aligned} x &\equiv a_1 \pmod{m_1} \\ x &\equiv a_2 \pmod{m_2} \\ &... \\ x &\equiv a_n \pmod{m_n} \end{aligned} \right. \] \(m_1, m_2 , ... , m_n\)两两互质 令\(M = \prod_{i=1}^{n} m_i\),求\(x \mod M\)…
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地理位置偏僻,实施的是适应当时社会的自给自足的庄园经济,很少与外界联系,商贸活动就更少了.因此也很少有其他动物知道这样一个王国. 猪王国虽然不大,但是土地肥沃,屋舍俨然.如果一定要拿什么与之相比的话,那就只能是东晋陶渊明笔下的大家想象中的桃花源了.猪…
CRT用于求解一元线性同余方程组(模数互质),实际上模数不互质我们也可以解决,在之前的某篇文章里提过.如下 http://www.cnblogs.com/autsky-jadek/p/6596010.html #include<cstdio> using namespace std; typedef long long ll; ll m[4],a[4],D,ans; void exgcd(ll a,ll b,ll &d,ll &x,ll &y){ if(!b){ d=a…
1079 中国剩余定理 一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K.例如,K % 2 = 1, K % 3 = 2, K % 5 = 3.符合条件的最小的K = 23. 收起 输入 第1行:1个数N表示后面输入的质数及模的数量.(2 <= N <= 10) 第2 - N + 1行,每行2个数P和M,中间用空格分隔,P是质数,M是K % P的结果.(2 <= P <= 100, 0 <= K < P) 输出 输出符合条件的最小的K.数据中所有K均小…
<题目链接> 题目大意: 给你一些模数和余数,让你求出满足这些要求的最小的数的值. 解题分析: 中国剩余定理(模数不一定互质)模板题 #include<stdio.h> using namespace std; #define ll long long ll A[],B[];//B[i]为余数 ll dg,ans;//dg为A[i]的最小公倍数 ans 为最小解 void exgcd(ll a, ll b, ll &d, ll&x, ll &y) { ; y…
Two Arithmetic Progressions 题目链接: http://codeforces.com/contest/710/problem/D Description You are given two arithmetic progressions: a1k + b1 and a2l + b2. Find the number of integers x such that L ≤ x ≤ R and x = a1k' + b1 = a2l' + b2, for some inte…
中国剩余定理的非互质形式 任意n个表达式一对对处理,故只需处理两个表达式. x = a(mod m) x = b(mod n) km+a = b (mod n) km = (a-b)(mod n) 利用扩展欧几里得算法求出k k = k0(mod n/(n,m)) = k0 + h*n/(n,m) x = km+a = k0*m+a+h*n*m/(n,m) = k0*m+a (mod n*m/(n,m)) #include <cstdio> #include <cstring> #…
题意:给你x%ci=bi(x未知),是否能确定x%k的值(k已知) ——数学相关知识: 首先:我们知道一些事情,对于k,假设有ci%k==0,那么一定能确定x%k的值,比如k=5和ci=20,知道x%20=y,那么ans=x%k=y%5; 介绍(互质版)中国剩余定理,假设已知m1,m2,mn,两两互质,且又知道x%m1,x%m2..x%mn分别等于多少 设M=m1*m2*m3..mn,那么x在模M的剩余系下只有唯一解(也就是知道了上面的模线性方程组,就可以求出x%M等于多少) ——此题解法 针对…
题目链接:传送门 推荐博客:https://www.cnblogs.com/freinds/p/6388992.html (证明很好,代码有误). 1079 中国剩余定理  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K.例如,K % 2 = 1, K % 3 = 2, K % 5 = 3.符合条件的最小的K = 23.   Input 第1行:1个数N表示后面输入的质数及模的数量.…