损失函数最小,也就是求极值点,也就是损失函数导数为0.上面也说了,如果d0+λ和d0-λ为异号的时候刚好为极值点,损失函数导数为0(w为0是条件).而对于L2正则化,在w=0时并不一定是极值点而是d0.这就说明了L1正则化更容易稀疏化.…
正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束.调整或缩小.也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险. 一.数学基础 1. 范数 范数是衡量某个向量空间(或矩阵)中的每个向量以长度或大小.范数的一般化定义:对实数p>=1, 范数定义如下:   L1范数 当p=1时,是L1范数,其表示某个向量中所有元素绝对值的和. L2范数 当p=2时,是L2范数, 表示某个向量中所有元素平方和再开根, 也就是欧几里得距离…
1. 过拟合是什么? https://www.zhihu.com/question/264909622    那个英文回答就是说h1.h2属于同一个集合,实际情况是h2比h1错误率低,你用h1来训练,用h2来测试,但h1的准确率比h2却高 个人理解:网络过分学习了训练集的特征,把不是这个训练集本质的特征也学习进去了,导致模型不能在测试集正确识别(记得统计学习方法里面有一个配图,一条曲线过分学习特征).或者说,训练集的准确率很高,但测试集的准确率很低.在training data上的error渐渐…
稀疏矢量通常包含许多维度.创建特征组合会导致包含更多维度.由于使用此类高维度特征矢量,因此模型可能会非常庞大,并且需要大量的 RAM. 在高维度稀疏矢量中,最好尽可能使权重正好降至 0.正好为 0 的权重基本上会使相应特征从模型中移除. 将特征设为 0 可节省 RAM 空间,且可以减少模型中的噪点. 以一个涵盖全球地区(不仅仅只是涵盖加利福尼亚州)的住房数据集为例.如果按分(每度为 60 分)对全球纬度进行分桶,则在一次稀疏编码过程中会产生大约 1 万个维度:如果按分对全球经度进行分桶,则在一次…
1 过拟合 过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上.出现over-fitting的原因是多方面的: 1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导致噪声很大 2 )特征数目过多导致模型过于复杂,如下面的图所示: 看上图中的多项式回归(Polynomial regression),左边为模型复杂度很低,右边的模型复杂度就过高,而中间的模型为比较合适的模型,对于Logistic有同样的情况 2)如何避免过拟合 1) 控制特征的数目,可以通过特征组…
机器学习中的范数规则化之(一)L0.L1与L2范数 博客的学习笔记,对一些要点进行摘录.规则化也有其他名称,比如统计学术中比较多的叫做增加惩罚项:还有现在比较多的正则化. -------------------------------------------- 一.正则化背景 监督机器学习问题无非就是"minimizeyour error while regularizing your parameters",也就是在规则化参数的同时最小化误差.最小化误差是为了让我们的模型拟合我们的训…
1 过拟合 过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上.出现over-fitting的原因是多方面的: 1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导致噪声很大 2 )特征数目过多导致模型过于复杂,如下面的图所示: 看上图中的多项式回归(Polynomial regression),左边为模型复杂度很低,右边的模型复杂度就过高,而中间的模型为比较合适的模型,对于Logistic有同样的情况 2)如何避免过拟合 1) 控制特征的数目,可以通过特征组…
我们知道L1正则化和L2正则化都可以用于降低过拟合的风险,但是L1正则化还会带来一个额外的好处:它比L2正则化更容易获得稀疏解,也就是说它求得的w权重向量具有更少的非零分量. 为了理解这一点我们看一个直观的例子:假定x有两个属性,于是无论是采用L1正则化还是采用L2正则化,它们解出的w权重向量都具有两个分量,即w1,w2:我们将其作为两个坐标轴,然后在这个二维空间中绘制 平方误差取值相同的连线,再分别绘制出L1范数和L2范数的等值线,那么我们的解就是平方误差等值线和范数等值线的焦点.从图上(机器…
L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择 L2正则化可以防止模型过拟合(overfitting):一定程度上,L1也可以防止过拟合 一.L1正则化 1.L1正则化 需注意,L1 正则化除了和L2正则化一样可以约束数量级外,L1正则化还能起到使参数更加稀疏的作用,稀疏化的结果使优化后的参数一部分为0,另一部分为非零实值.非零实值的那部分参数可起到选择重要参数或特征维度的作用,同时可起到去除噪声的效果.此外,L1正则化和L2正则化可以联合使用: 这种形式也被称为“Elas…
1. 为什么要使用正则化   我们先回顾一下房价预测的例子.以下是使用多项式回归来拟合房价预测的数据:   可以看出,左图拟合较为合适,而右图过拟合.如果想要解决右图中的过拟合问题,需要能够使得 $ x^3,x^4 $ 的参数 $ \theta_3,\theta_4 $ 尽量满足 $ \theta_3 \approx 0 ,\theta_4 \approx 0 $ .   而如何使得 $ \theta_3,\theta_4 $ 尽可能接近 $ 0 $ 呢?那就是对参数施一惩罚项.我们先来看一下线…