Codeforces 360A(找性质)】的更多相关文章

Codeforces 题面传送门 & 洛谷题面传送门 智商掉线/ll 本来以为是个奇怪的反悔贪心,然后便一直往反悔贪心的方向想就没想出来,看了题解才发现是个 nb 结论题. Conclusion. 在最优方案中,至多只有一个数组只有部分被选,其余数组要么全选要么全都不选. 证明:考虑调整.假设存在两个数组 \(x,y\) 分别选了前 \(p,q\) 个元素,这里不妨假设 \(a_{x,p+1}\ge a_{y,q+1}\),那么考虑从 \(y\) 数组中拎 \(l=\min(len_x-p,q)…
Atcoder 题面传送门 & 洛谷题面传送门 震惊,我竟然能独立切掉 AGC E 难度的思维题! hb:nb tea 一道 感觉此题就是找性质,找性质,再找性质( 首先看到排列有关的问题,我们可以很自然地将排列拆成一个个置换环,即我们建一张图 \(G\),对于 \(i\in[1,n]\) 连边 \(i\to p_i\),那么题目的要求就可以转化为:对于每个点 \(i\),它置换环上下一步或者下下步为 \(a_i\). 做出这个简单的转化后,就可以发现一个非常 trivial 的性质: Obse…
反思 写一写可以发现上限不断更新 一直在想怎么判断NO,刻板拘泥于错误的模型,想要像往常一样贪心地.读入当前值就能判断会不会NO,实际上只要构造完以后,最后把所有操作重新跑一遍看会不会冲突即可判断NO #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const int maxn = 5005; int n, m…
Codeforces 题面传送门 & 洛谷题面传送门 一道名副其实(beautiful)的结论题. 首先看到这道设问方式我们可以很自然地想到套用斐波那契数列的恒等式,注意到这里涉及到 \(F_{a+id}\),因此考虑斐波那契数列组合恒等式 \(F_{m+n+1}=F_mF_{n}+F_{m+1}F_{n+1}\),具体证明戳这里,这里就不再赘述了. 注意到此题还涉及后 \(18\) 位,也就是要将斐波那契数列的各种运算放到模 \(10^{18}\) 意义下进行,因此我们可以考虑找一下斐波那契数…
Codeforces 题目传送门 & 洛谷题目传送门 其实是一道还算一般的题罢--大概是最近刷长链剖分,被某道长链剖分与直径结合的题爆踩之后就点开了这题. 本题的难点就在于看出一个性质:最长路径的其中一个端点一定是直径的某一个端点. 证明:首先我们找出原树的一个直径,如果直径上标记边的个数为偶数那显然这条直径就是最优解,符合题意,否则我们假设我们找出的直径为 \(AB\),我们已经找出了一条符合要求的路径 \(CD\),下证我们总可以通过调整 \(CD\) 的端点,找出一条以 \(A\) 或 \…
Codeforces 题目传送门 & 洛谷题目传送门 %%%%% 这题也太神了吧 storz 57072 %%%%% 首先容易注意到我们选择的这 \(y\) 条路径的端点一定是叶子节点,否则我们总可以将其调整到叶子节点并使答案不会更劣,并且如果非必须(\(2y\le\) 树中叶子节点的个数),我们选择的这 \(y\) 个路径的 \(2y\) 个端点一定两两不相同,否则我们还是可以调整重复的叶子节点的位置使答案不变劣. 其次我们还可以发现,对于固定的 \(2y\) 个叶子节点,我们总存在一种选法使…
Codeforces 题面传送门 & 洛谷题面传送门 咦,题解搬运人竟是我? 一道很毒的计数题. 先转化下题意,每一次操作我们可以视作选择一种颜色并将其出现次数 \(+k\),之后将所有颜色的出现次数 \(-1\).我们假设第 \(i\) 种颜色被操作了 \(c_i\) 次,那么一组 \(\{c_1,c_2,\cdots,c_k\}\) 符合条件当且仅当 \(\forall i,a_i+kc_i\ge\sum\limits_{i=1}^kc_i\).我们所求即是符合这样的条件的 \(\{a_i-…
Codeforces 题面传送门 & 洛谷题面传送门 神奇的强迫症效应,一场只要 AC 了 A.B.D.E.F,就一定会把 C 补掉( 感觉这个 C 难度比 D 难度高啊-- 首先考虑对问题进行初步转化.显然对于 \(s_i=s_j,t_i=t_j\)​ 的 \((i,j)\)​,我们肯定会将它们放在一起操作,这启发我们将所有 \((s_i,t_i)\)​ 看作一个二元组,那么如果我们把"每一步将字符 \(x\) 变为 \(y\)"这样的操作视作一条从 \(x\) 连向 \(y…
Codeforces 题面传送门 & 洛谷题面传送门 u1s1 感觉这个 D1F 比某道 jxd 作业里的 D1F 质量高多了啊,为啥这场的 D 进了 jxd 作业而这道题没进/yun 首先这题肯定有个结论对吧,那么我们就先尝试猜一下什么样的排列符合条件,也就是先考虑这题 \(a_i\)​​ 全是 \(-1\)​​ 的情况怎么做,那么通过观察可以发现,由于判定两个数是否互质的过程中只需要考虑它们的质因子集合即可,因此可以发现如果两个数包含的质因子集合完全相同,那么它们显然是可以互换的,因此假设第…
Codeforces 题面传送门 & 洛谷题面传送门 一道不知道能不能算上自己 AC 的 D1E(?) 挺有意思的结论题,结论倒是自己猜出来了,可根本不会证( 开始搬运题解 ing: 碰到这样的题我们肯定要考虑一个图邻接矩阵的秩是什么.显然根据我们幼儿园就学过的线性代数,对于一个矩阵 \(A\)​ 而言,其行列式就是其最大的子式满足其行列式不等于 \(0\),也就是任取若干行 & 若干列,它们的交组成的矩阵行列式不等于 \(0\),不难发现对于一个森林的邻接矩阵而言,对于任意一个子式,如果…