R语言实现分层抽样(Stratified Sampling)以iris数据集为例 1.观察数据集 head(iris) Sampling)以iris数据集为例">  选取数据集中前6个数据,我们可以看出iris数据集一共有5个字段. dim(iris) Sampling)以iris数据集为例">  iris数据集一共有150条数据,5个字段 summary(iris) Sampling)以iris数据集为例">  观察各个变量的内容,可以看出前四个变量(Se…
本文对应<R语言实战>前3章,因为里面大部分内容已经比较熟悉,所以在这里只是起一个索引的作用. 第1章       R语言介绍 获取帮助函数 help(), ? 查看函数帮助 example() 使用函数示例 vignette() 列出vignette文档 vignette("svmdoc") 打开对应文档 管理工作空间 getwd() 显示当前工作目录 setwd("mydirectory") 修改当前工作目录为mydirectory rm(objec…
library(randomForest)model.forest<-randomForest(Species~.,data=iris)pre.forest<-predict(model.forest,iris)table(pre.forest,iris$Species) library(rpart)library(randomForest)model.forest<-randomForest(Kyphosis~.,data=kyphosis)pre.forest<-predict…
library(AMORE)data<-read.table('G:\\dataguru\\ML\\ML09\\基于BP网络的个人信贷信用评估\\基于BP网络的个人信贷信用评估\\german.data-numeric')for (i in 1:25) {data[,i] <- as.numeric(as.vector(data)[,i])}pos<-data[which(data$V25=='1'),]neg<-data[which(data$V25=='2'),]train&l…
散点图简介 散点图通常是用来表述两个连续变量之间的关系,图中的每个点表示目标数据集中的每个样本. 同时散点图中常常还会拟合一些直线,以用来表示某些模型. 绘制基本散点图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用散点图函数geom_point()便可绘制出基本散点图.R语言示例代码如下: # 基函数 ggplot(ah, aes(x = ageYear, y = heightIn)) + # 散点图函数 geom_point()…
前言 绘制统计图形时,半数以上的时间会花在调用绘图命令之前的数据塑型操作上.因为在把数据送进绘图函数前,还得将数据框转换为适当格式才行. 本文将给出使用R语言进行数据塑型的一些基本的技巧,更多技术细节推荐参考<R语言核心手册>. 数据框塑型 1. 创建数据框 - data.frame() # 创建向量p p = c("A", "B", "C") # 创建向量q q = 1:3 # 创建数据框:含p/q两列 dat = data.fra…
一.apply函数(对一个数组按行或者按列进行计算): 使用格式为:apply(X, MARGIN, FUN, ...) 其中X为一个数组:MARGIN为一个向量(表示要将函数FUN应用到X的行还是列),若为1表示取行,为2表示取列,为c(1,2)表示行.列都计算.apply()函数的处理对象是矩阵或数组,它逐行或逐列的处理数据,其输出的结果将是一个向量或是矩阵.下面的例子即对一个随机矩阵求每一行的均值.要注意的是apply与其它函数不同,它并不能明显改善计算效率,因为它本身内置为循环运算. 示…
DT 包提供了 JavaScript 库 DataTables 的一个R接口,它使得R对象(矩阵或数据框)可以在HTML页面上显示为表格. 该包的DataTables函数生成的表格提供了数据的筛选.分页.排序及其他功能,目前依法不再CRAN上. 安装方法 install.packages("DT", repos="https://cloud.r-project.org/") 查看文档 ??DT 使用方法 该包的一个主要函数是 datatable().这个函数通过创建…
Cairo使用起来非常简单,和基础包grDevices中的函数对应. CairoPNG---grDevices:png(). CairoTIFF---grDevices:tiff(). CairoPDF---grDevices:pdf(). ... 查看Cairo所支持的图片格式: #加载Cairo包 library(Cairo) #检查所支持的图片格式 Cairo.capabilities() 以iris数据集为例 > head(iris) Sepal.Length Sepal.Width P…
SVM全称是Support Vector Machine,即支持向量机,是一种监督式学习算法.它主要应用于分类问题,通过改进代码也可以用作回归.所谓支持向量就是距离分隔面最近的向量.支持向量机就是要确保这些支持向量距离超平面尽可能的远以保证模型具有相当的泛化能力. 当训练数据线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机:当训练数据近似线性可分时,通过软间隔最大化,也学习一个线性分类器,即线性支持向量机:当训练数据线性不可分时,通过使用核技巧,将低维度的非线性问题转化为高…