poj - 1191 - 棋盘切割(dp)】的更多相关文章

题意:将一个8*8的棋盘(每一个单元正方形有个分值)沿直线(竖或横)割掉一块,留下一块,对留下的这块继续这样操作,总共进行n - 1次,得到n块(1 < n < 15)矩形,每一个矩形的分值就是单元正方形的分值的和,问这n个矩形的最小均方差. 题目链接:id=1191">http://poj.org/problem? id=1191 -->>此题中.均方差比較,等价于方差比較,等价于平方和比較. . 状态:dp[x1][y1][x2][y2][i]表示将(x1, y…
一,题意: 中文题 二.分析: 主要利用压缩dp与记忆化搜索思想 三,代码: #include <iostream> #include <stdio.h> #include <string.h> #include <stdlib.h> #include <math.h> using namespace std; const int Big=20000000; int Mat[10][10]; int N; int sum[10][10]; int…
题目:http://poj.org/problem?id=1191 黑书116页的例题 将方差公式化简之后就是 每一块和的平方 相加/n , 减去平均值的平方. 可以看出来 方差只与 每一块的和的平方有关,所以就是求每个矩形的总分的平方和 尽量小.... #include <iostream> #include <cstdio> #include <cmath> #include <cstring> #include <cstdlib> #inc…
题目链接 大体思路看,黑书...其他就是注意搞一个in数组,这样记忆化搜索,貌似比较快. #include <cstdio> #include <cstring> #include <iostream> #include <cmath> using namespace std; #define INF 0x7fffffff ][],sum[][]; ][][][][]; ][][][][]; ][][][]; int dfs(int x1,int y1,in…
题目链接: 黑书 P116 HDU 2157 棋盘分割 POJ 1191 棋盘分割 分析:  枚举所有可能的切割方法. 但如果用递归的方法要加上记忆搜索, 不能会超时... 代码: #include<iostream> #include<cstdio> #include<cstring> #include<cmath> using namespace std; const int inf=6400*6400; const int N=8; int sum[1…
题目传送门:http://poj.org/problem?id=1191 棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16150   Accepted: 5768 Description 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘.(每次切割都只能沿着棋盘格子的边进行) 原棋盘上每一格…
http://poj.org/problem?id=1191 题意:中文题. 题解: 1.关于切割的模拟,用递归 有这样的递归方程(dp方程):f(n,棋盘)=f(n-1,待割的棋盘)+f(1,割下的棋盘) 2.考虑如何计算方差,根据以下方差公式 我们只需算∑Xi  2的最小值//然后将它乘以n,减去总和的平方,除以n^2,再整体开根号就行了,化简一下的结果 3.关于棋盘的表示,我们用左上角坐标与右下角坐标,常规表示 4.关于计算优化,用sum二维前缀和.并且进行记忆化递归. 技巧:1&引用…
Description 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘.(每次切割都只能沿着棋盘格子的边进行) 原棋盘上每一格有一个分值,一块矩形棋盘的总分为其所含各格分值之和.现在需要把棋盘按上述规则分割成n块矩形棋盘,并使各矩形棋盘总分的均方差最小. 均方差,其中平均值,xi为第i块矩形棋盘的总分. 请编程对给出的棋盘及n,求出O'的最小值.   题目好像很经典,DP问题…
题目链接 题意 : 中文题不详述. 思路 : 黑书上116页讲的很详细.不过你需要在之前预处理一下面积,那样的话之后列式子比较方便一些. 先把均方差那个公式变形, 另X表示x的平均值,两边平方得 平均值是一定的,所以只要让每个矩形的总分的平方和尽量小即可.左上角坐标为(x1,y1)右下角坐标为(x2,y2)的棋盘,设总和为s[][][][],切割k次以后得到k+1块矩形的总分平方和是d[k][][][][],则可以沿着横线切也可以沿着竖线切,然后选一块接着切,递归下去,状态转移方程 d[k,x1…
题面 思路:分析公式,我们可以发现平均值那一项和我们怎么分的具体方案无关,影响答案的是每个矩阵的矩阵和的平方,由于数据很小,我们可以预处理出每个矩阵的和的平方,执行状态转移. 设dp[l1][r1][l2][r2][k]是矩阵l1,r1,l2,r2切割k次的最小值,我们可以枚举是横着切还是竖着切执行状态转移. 代码: #include <cstdio> #include <algorithm> #include <cstring> #include <cmath&…