1.浅述python中argsort()函数的用法 (1).先定义一个array数据 1 import numpy as np 2 x=np.array([1,4,3,-1,6,9]) (2).现在我们可以看看argsort()函数的具体功能是什么: x.argsort() 输出定义为y=array([3,0,2,1,4,5]). 我们发现argsort()函数是将x中的元素从小到大排列,提取其对应的index(索引),然后输出到y.例如:x[3]=-1最小,所以y[0]=3,x[5]=9最大,…
关联规则 -- 简介 关联规则挖掘是一种基于规则的机器学习算法,该算法可以在大数据库中发现感兴趣的关系.它的目的是利用一些度量指标来分辨数据库中存在的强规则.也即是说关联规则挖掘是用于知识发现,而非预测,所以是属于无监督的机器学习方法.        Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集. 关联规则的一般步骤:              1.找到频繁集:              2.在频繁集中通过可信度筛选获得…
朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM).        和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率.同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单.        理论上,N…
KNN简介 K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.KNN分类算法属于监督学习. 最简单最初级的分类器是将全部的训练数据所对应的类别都记录下来,当测试对象的属性和某个训练对象的属性完全匹配时,便可以对其进行分类.但是怎么可能所有测试对象都会找到与之完全匹配的训练对象呢,其次就是存在一个测试对象同时与多个训练对象匹配,导致一个训练对象被分到了多个类的问题,基于这些问题呢,就产生了KNN. 算法思路 KNN是通过测量…
SVM--简介 <α∗j<C,可得:          构造决策函数:  5.求最优解         要求解的最优化问题如下:          考虑使用序列最小最优化算法(SMO,sequential minimal optimization) SVM--实现 SVM # -*- coding: utf-8 -*- # Mathieu Blondel, September 2010 # License: BSD 3 clause import numpy as np from numpy…
逻辑回归--简介 逻辑回归(Logistic Regression)就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏.        Logistic回归虽然名字里带"回归",但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别).        回归模型中,y是一个定性变量,比如y=0或1,logistic方法主要应用于研究某些事件发生的概率. 逻辑回归--优缺点 优…
决策树 -- 简介         决策树(decision tree)一般都是自上而下的来生成的.每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树. 决策树是一种有监管学习的分类方法.决策树的生成算法有 ID3 .C4.5 和 CART(Classification And Regression Tree)等,CART的分类效果一般优于其他决策树.         决策树的决策过程需要从决策树的根节点开始,待测数据与决策树…
K-Means简介 步,直到每个簇的中心基本不再变化: 6)将结果输出. K-Means的说明 如图所示,数据样本用圆点表示,每个簇的中心点用叉叉表示:       (a)刚开始时是原始数据,杂乱无章,没有label,看起来都一样,都是绿色的.       (b)假设数据集可以分为两类,令K=2,随机在坐标上选两个点,作为两个类的中心点.       (c-f)演示了聚类的两种迭代:           先划分,把每个数据样本划分到最近的中心点那一簇:           划分完后,更新每个簇的…
apriori 使用Apriori算法进行关联分析 貌似网上给的代码是这个大牛写的 关联规则挖掘及Apriori实现购物推荐  老师 Apriori 的python算法实现 python实现关联规则  对上述算法做了微调 Apriori算法的基本原理以及改进 关联规则评价 FPgrowth FP-growth算法理解和实现 FP-growth 算法与Python实现 Python机器学习算法 — 关联规则(Apriori.FP-growth) 关联规则—Apriori.FPTree算法理解  a…
机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因此将机器学习中常见的原理性问题记录下来,保持对各个机器学习算法原理和特点的熟练度. 本文总结了机器学习一些面试题和笔试题,以便自己学习,当然了也为了方便大家,题目是网上找的额,如果有侵权请联系小编,还有,不喜勿喷,谢谢!!! 算法分类 下面图片是借用网友做的,很好的总结了机器学习的算法分类: 问答题…