​ 第一篇博客,请大家多多关照.(鞠躬 BZOJ4555 TJOI2016 HEOI2016 求和 题意: ​ 给定一个正整数\(n\)(\(1\leqq n \leqq100000\)),求: \[ \begin{align*} f(n)=\sum_{i=0}^n\sum_{j=0}^i \begin{Bmatrix}i\\j\end{Bmatrix}\times2^j\times(j!) \end{align*} \] 题解: ​ 第二类斯特林数公式题,题目中很良心地给了我们第二类斯特林数的…
loj2058 「TJOI / HEOI2016」求和 NTT 链接 loj 思路 \[S(i,j)=\frac{1}{j!}\sum\limits_{k=0}^{j}(-1)^{k}C_{j}^{k}(j-k)^{i}\] \[\sum\limits_{i=0}^{n}\sum\limits_{j=0}^{i}S(i,j)·2^j·j!\] \[\sum\limits_{i=0}^{n}\sum\limits_{j=0}^{n}S(i,j)·2^j·j!\] \[\sum\limits_{j=…
题面 Bzoj Luogu 题解 先来颓柿子 $$ \sum_{i=0}^n\sum_{j=0}^iS(i,j)2^jj! \\ =\sum_{j=0}^n2^jj!\sum_{i=0}^nS(i,j) \\ \because S(n, m)=\frac1{m!}\sum_{i=0}^m(-1)^i\binom{m}{i}(m-i)^n=\sum_{i=0}^m\frac{(-1)^i}{i!}\frac{(m-i)^n}{(m-i)!} \\ \therefore=\sum_{j=0}^n2^…
题目链接 (luogu) https://www.luogu.org/problem/P4091 (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4555 题解 终于不是神仙题了啊... 首先\(O(n\log n)\)的FFT做法非常明显,直接用容斥展开,这里不再赘述了.发现最后就是要求一个\(\sum^{n}_{k=0}\sum^{n}_{j=k}(-1)^{j-k}{j\choose k}2^j(\sum^{n}_{i=0}k…
题目描述 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <= j <= i − 1. 边界条件为:S(i, i) = 1(0 <= i), S(i, 0) = 0(1 <= i) 你能帮帮他吗? 输入 输入只有一个正整数 输出 输出f(n).由于结果会很大,输出f(n)对998244353(7 ×…
原题传送门 \[\begin{aligned} a n s &=\sum_{i=0}^{n} \sum_{j=0}^{i}\left\{\begin{array}{c}{i} \\ {j}\end{array}\right\} 2^{j} \times j ! \\ &=\sum_{i=0}^{n} \sum_{j=0}^{n}\left\{\begin{array}{c}{i} \\ {j}\end{array}\right\} 2^{j} \times j ! \\ &=\su…
传送门 这一类题都要考虑推式子 首先,原式为\[f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i}S(i,j)*2^j*j!\] 可以看成\[f(n)=\sum_{j=0}^{n}2^j*j!\sum_{i=j}^{n}S(i,j)\] 又因为\[S(i,j)=\frac{1}{j!}\sum_{k=0}^{j}(-1)^k*\binom{j}{k}*(j-k)^i\] 所以\[f(n)=\sum_{j=0}^{n}2^j*j!\sum_{i=0}^{n}\frac{1}{j!}…
题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <= j <= i − 1. 边界条件为:S(i, i) = 1(0 <= i), S(i, 0) = 0(1 <= i) 你能帮帮他吗? 输入格式 输入只有一个正整数 输出格式 输出f(n).由于结果会很大,输出f(n)对998244353(7…
S(i,j)=Σ(-1)j-k(1/j!)·C(j,k)·ki=Σ(-1)j-k·ki/k!/(j-k)!.原式=ΣΣ(-1)j-k·ki·2j·j!/k!/(j-k)! (i,j=0~n).可以发现i只在式中出现了一次且与j不相关,如果对每个k求出其剩余部分的答案,各自乘一下即可.而剩余部分显然是一个卷积. #include<bits/stdc++.h> using namespace std; ;} int read() { ,f=;char c=getchar(); ;c=getchar…
题意 给你一个数 \(n\) 求这样一个函数的值 : \[\displaystyle f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i} \begin{Bmatrix} i \\ j \end{Bmatrix} \times 2^j \times (j!)\] \((1 \le n \le 100000)\) 题解 这个题直接划式子 然后 \(NTT\) 就行了qwq 需要知道一个容斥求斯特林数的东西 \[\displaystyle \begin{Bmatrix} n \\ m…