Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes,…
POJ3641 Pseudoprime numbers p是Pseudoprime numbers的条件: p是合数,(p^a)%p=a;所以首先要进行素数判断,再快速幂. 此题是大白P122 Carmichael Number 的简化版 /* * Created: 2016年03月30日 22时32分15秒 星期三 * Author: Akrusher * */ #include <cstdio> #include <cstdlib> #include <cstring&g…
输入a和p.如果p不是素数,则若满足ap = a (mod p)输出yes,不满足或者p为素数输出no.最简单的快速幂,啥也不说了. #include<iostream> #include<cstdio> #include<cstring> #include<cmath> using namespace std; typedef long long ll; ll p,a; int whether(int p) { ; ;i*i<=p;i++) ) {…
给你两个数字p,a.如果p是素数,并且ap mod p = a,输出“yes”,否则输出“no”. 很简单的板子题.核心算法是幂取模(算法详见<算法竞赛入门经典>315页). 幂取模板子: int pow_mod(int a,int n,int m) { ) ; , m); long long ans = (long long)x * x % m; ) ans = ans * a % m; return (int)ans; } 题目代码也比较简单,有一个坑点是如果用筛素数打表,数组开不了这么大…
Pseudoprime numbers Descriptions 费马定理指出,对于任意的素数 p 和任意的整数 a > 1,满足 ap = a (mod p) .也就是说,a的 p 次幂除以 p 的余数等于 a .p 的某些 (但不是很多) 非素数的值,被称之为以 a 为底的伪素数,对于某个 a 具有该特性.并且,某些 Carmichael 数,对于全部的 a 来说,是以 a为底的伪素数. 给定 2 < p ≤ 1000000000 且 1 < a < p ,判断 p 是否为以 …
题目链接:POJ 3641 Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, know…
Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11336   Accepted: 4891 Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power…
Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7954 Accepted: 3305 Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and…
Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a ps…
A sequence of numbers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4550    Accepted Submission(s): 1444 Problem Description Xinlv wrote some sequences on the paper a long time ago, they might…