Centos配置深度学习开发环境】的更多相关文章

目录 1. 安装显卡驱动 2. 安装CUDA\CUDNN 3. 安装TensorFlow-gpu 测试 1. 安装显卡驱动 检测显卡驱动及型号 $ sudo rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org 添加ELPepo源 $ sudo rpm -Uvh http://www.elrepo.org/elrepo-release-7.0-2.el7.elrepo.noarch.rpm 安装NVIDIA驱动检测 $ sudo y…
从零开始在ubuntu上配置深度学习开发环境 昨天一不小心把原来配置好的台式机的开发环境破坏了,调了半天没有调回来,索性就重装一次ubuntu系统.这篇文章主要记录一个简单的.‘傻瓜式’教程. 一.Ubuntu系统重装 可以参照以下链接的教程来准备启动盘,然后安装系统,地址为在这里. 二.安装Firefox浏览器 在国内的官网上面下载安装火狐浏览器.首先下载tar文件,如下图: 将压缩包内的文件解压到某一路径之内,博主选择的是解压到:/usr/share/路径下,因为这是ubuntu安装软件的默…
原文地址:解决 Ubuntu 18.10 使用较新的独立显卡输出无法初始化图形界面并配置深度学习开发环境 0x00 配置 硬件 OS: Ubuntu 18.10 Base Board: ASUS WS X299 SAGE CPU: Intel® Core™ i9-9820X GPU: NVIDIA GeForce RTX 2080 * 4 RAM: 64 G 将要安装的软件 NVIDIA Driver: 410.93 Anaconda: Anaconda3 - conda 4.6.14 pyth…
在Ubuntu18.04下配置深度学习/机器学习开发环境 1.下载并安装Anaconda 下载地址:https://www.anaconda.com/distribution/#linux 安装步骤: 1)在下载的anaconda路径下打开终端执行命令: bash ~/Downloads/Anaconda3-5.2.0-Linux-x86_64.sh 2)记录下安装过程中的配置路径 Prefix=/home/your name/anaconda2/ 其中“your name”是你的用户名 3)安…
本文将指导你如何在自己的Mac上部署Theano + Keras的深度学习开发环境. 如果你的Mac不自带NVIDIA的独立显卡(例如15寸以下或者17年新款的Macbook.具体可以在"关于本机->系统报告->图形卡/显示器"里查看),那么你可能无法在这台Mac上使用GPU训练深度学习模型.不过这并不值得遗憾.事实上,我在自己的Macbook上(15-inch,Early 2013,NVIDIA GeForce GT 650M 1024 MB)做了一个简单的测试:在mni…
开发环境介绍 在SuperVessel云上,我们为大家免费提供当前火热的caffe深度学习开发环境.SuperVessel的Caffe有如下优点: 1) 免去了繁琐的Caffe环境的安装配置,即申请即使用. 2) 集成了SuperVessel先进的GPU虚拟化技术,POWER8,GPU与cuDNN库三重加速的Caffe,极大的节约您的模型训练时间. 3) 环境集成了一些优秀的Caffe开源模型,如图片识别与人脸识别模型,帮助您更快的学习理解Caffe,助力您搭建有趣的深度学习应用. Caffe深…
事后补充比较全面的(找对资料真的省一半功夫):https://www.jianshu.com/p/5b708817f5d8?from=groupmessage Ubuntu16.04 + 1080Ti深度学习环境配置教程 ———————————————————————————————————————————— 以下是自己搭建环境时,所参考的有用资料: Anaconda完全入门指南 https://www.jianshu.com/p/eaee1fadc1e9 ubuntu16.04安装Anacon…
安装完centos后,写了一个驱动测试程序Hello.编译过程出现如下错误: make: *** /lib/modules/2.6.32-220.4.1.el6.i686/build: No such file or directory.  Stop.make: *** [all] Error 2 但是用ls查询了一下,该文件明明存在.上网搜集,终于明白了. 需要安装很多kernel相关的编译软件.需要安装的软件如下:  1:kernel-firmware        2:kernel    …
深度学习主机环境配置: Ubuntu16.04 + GeForce GTX 1070 + CUDA8.0 + cuDNN5.1 + TensorFlow 最近在公司做深度学习相关的学习和实验,原来一直在自己的电脑上安装虚拟机跑,速度实在太慢,主机本身性能太弱,独显都没有,物理安装Ubuntu也没多大意义,所以考虑用公司性能最强悍的游戏主机(i7 6700+GTX 1070) 做实验,这台主机平时是用来跑HTC VIVE的,现在归我用了o(*≧▽≦)ツ. 原本以为整个一套安装下来会很顺利,一路火花…
接上文<深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0>,我们继续来安装 TensorFlow,使其支持GeForce GTX 1080显卡. 1 下载和安装cuDNN cuDNN全称 CUDA Deep Neural Network library,是NVIDIA专门针对深度神经网络设计的一套GPU计算加速库,被广泛用于各种深度学习框架,例如Caffe, TensorFlow, Theano, Torch, CNTK等. The NVIDIA…