连通性1 求无向图的low值】的更多相关文章

这是DFS系列的第一篇 . 首先给出一个重要的定理.该定理来自<算法导论>. An undirected graph may entail some ambiguity in how we classify edges,since (u, v) and (v, u) are really the same edge. In such a case, we classify the edge according to whichever of (u, v) or (v, u) the searc…
题目: 曹操在长江上建立了一些点,点之间有一些边连着.如果这些点构成的无向图变成了连通图,那么曹操就无敌了.刘备为了防止曹操变得无敌,就打算去摧毁连接曹操的点的桥.但是诸葛亮把所有炸弹都带走了,只留下一枚给刘备.所以刘备只能炸一条桥. 题目给出n,m.表示有n个点,m条桥. 接下来的m行每行给出a,b,c,表示a点和b点之间有一条桥,而且曹操派了c个人去守卫这条桥. 现在问刘备最少派多少人去炸桥. 如果无法使曹操的点成为多个连通图,则输出-1. 思路: 就是用tarjan算法算出桥的数量,再比较…
模板题——求割点与桥 题意,要使一个无向图不连通,输出必定要删掉的边的数量及其编号.求桥的裸题,可拿来练手. 套模板的时候注意本题两节点之间可能有多条边,而模板是不判重边的,所以直接套模板的话,会将重边也当做桥输出,因此要在判断桥的时候加一个判断,即当且仅当两点之间仅有一条边,且满足dfn[cur] < low[i],(cur, i)才是桥. 另外本题节点数为105,用邻接矩阵的话会内存超限,所以我用了了一个multiset存储边及其编号. 代码如下: #include<cstdio>…
RobertTarjan真的是一个传说级的大人物. 他发明的LCT,SplayTree这些数据结构真的给我带来了诸多便利,各种动态图论题都可以用LCT解决. 而且,Tarjan并不只发明了LCT,他对计算机科学做出的贡献真的很多. 这一篇我就来以他名字命名的Tarjan算法可以O(n)求出无向图的割点和桥. 进一步可以求出无向图的DCC( 双连通分量 ).不止无向图,Tarjan算法还可以求出有向图的SCC( 强连通分量 ). Tarjan算法基于dfs,接下来我们引入几个基本概念. dfn:时…
题目链接:旅行社的烦恼 题意是求无向图的最小环,如果有的话,输出个数,并且输出权值. 刚刚补了一发floyd 动态规划原理,用了滑动数组的思想.所以,这个题就是floyd思想的变形.在k从1到n的过程中更新到k时,mindis数组中保存的是只经过1~k-1序号的点时,任意两个之间的最短路权值,这时候,选择点k作为环的起点即终点,在[1, k)之间选择两个点i, j 得到一个环,环的权值即为mindis[i][j] + dis[i][k] + dis[j][k].这样遍历得到的是就是所有的环,且环…
tarjan算法--求无向图的割点和桥   一.基本概念 1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不连通,则称该边为桥. 2.割点:无向连通图中,如果删除某点后,图变成不连通,则称该点为割点. 二:tarjan算法在求桥和割点中的应用 1.割点:1)当前节点为树根的时候,条件是“要有多余一棵子树”(如果这有一颗子树,去掉这个点也没有影响,如果有两颗子树,去掉这点,两颗子树就不连通了.) 2)当前节…
#include<bits/stdc++.h> using namespace std; typedef long long ll; int n,m; ; ; struct node { int to; int nxt; }e[maxm]; int head[maxn]; int tot; int id; int root; int low[maxn]; int num[maxn]; bool vis[maxn]; int pa[maxn]; ; int art[maxn]; void ini…
这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为“点双连通图”,不存在桥则称为“边双连通图”. 无向图的极大点双连通子图就v-DCC,极大边双连通子图就是e-DCC. 上一篇我们讲了如何用Tarjan算法求出无向图中的所有割点和桥. 不会求的朋友们可以去看一看上篇文章:Tarjan算法求无向图的割点和桥 这里“极大”的定义可以理解为包含部分点的最…
/* 求 无向图的割点和桥 可以找出割点和桥,求删掉每个点后增加的连通块. 需要注意重边的处理,可以先用矩阵存,再转邻接表,或者进行判重 */ const int MAXN = 10010; const int MAXM = 100010; struct Edge { int to,next; bool cut;//是否为桥的标记 }edge[MAXM]; int head[MAXN],tot; int Low[MAXN],DFN[MAXN],Stack[MAXN]; int Index,top…
// tarjan算法求无向图的桥.边双连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<vector> using namespace std; ; ], Next[SIZE * ]; int dfn[SIZE], low[SIZE], c[SIZE]; int n, m, tot, num, dcc, tc; ]…