Common Pitfalls In Machine Learning Projects In a recent presentation, Ben Hamner described the common pitfalls in machine learning projects he and his colleagues have observed during competitions on Kaggle. The talk was titled "Machine Learning Grem…
About this Course You will learn how to build a successful machine learning project. If you aspire to be a technical leader in AI, and know how to set direction for your team's work, this course will show you how. Much of this content has never been…
Lesson 3 Structuring Machine Learning Projects 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第三门课程的课程笔记. 参考了其他人的笔记继续归纳的. 迁移学习 (Transfer learning) 深度学习中,最强大的理念之一就是,有的时候神经网络可以从一个任务中习得知识,并将这些知识应用到另一个独立的任务中. 假如说我们已经训练好一个图像识别神经网络,如猫狗识别器之类的,然后我们让它适应或者说迁移到放射科诊断,类似 X 射线扫…
Learning Goals Understand why Machine Learning strategy is important Apply satisficing and optimizing metrics to set up your goal for ML projects Choose a correct train/dev/test split of your dataset Understand how to define human-level performance U…
Week1 Bird recognition in the city of Peacetopia (case study)( 和平之城中的鸟类识别(案例研究)) 1.Problem Statement This example is adapted from a real production application, but with details disguised to protect confidentiality. (问题陈述:这个例子来源于实际项目,但是为了保护机密性,我们会对细节…
[]To help you practice strategies for machine learning, the following exercise will present an in-depth scenario and ask how you would act. Consider airplane pilots who’s training involves time spent in flight simulators. These flight simulators acce…
1 Machine Learning strategy 1.1 为什么有机器学习调节策略 当你的机器学习系统的性能不佳时,你会想到许多改进的方法.但是选择错误的方向进行改进,会使你花费大量的时间,但是无法得到想要的结果. 这一部分吴恩达老师将讲解一些他在国王总结的经验教训,改进策略,避免南辕北辙.而且现在深度学习的的策略变化日新月异. 1.2 Orthogonalization(正交化) 不耦合的.举例了控制电视屏幕,汽车. 1.2.1 chain of assumption in ML 下面这…
正交化 Orthogonalization单一评价指标保证训练.验证.测试的数据分布一致不同的错误错误分析数据分布不一致迁移学习 transfer learning多任务学习 Multi-task learning端到端的深度学习系统好处坏处Reference 这门课不是具体的技术,而是帮助你决定现在最有价值做的应该是什么 正交化 Orthogonalization 简单的说就是有些调整是不相互影响的,所以可以分开做 单一评价指标 一般来说有一个单一数值作为评价指标会更好 如果存在多个指标,一般…
Why ML stategy 怎么提高预测准确度?有了stategy就知道从哪些地方入手,而不至于找错方向做无用功. Satisficing and Optimizing metric 上图中,running time <= 100ms 就是satisficing,accuracy 就是 optimazing. Dev set and test set should be from same distribution. 传统的traing set/ dev set / test set 比例是6…
[中文翻译] 为了帮助您练习机器学习的策略, 在本周我们将介绍另一个场景, 并询问您将如何行动.我们认为, 这个工作在一个机器学习项目的 "模拟器" 将给一个任务, 告诉你一个机器学习项目像什么! 你受雇于一自动驾驶汽车公司.您负责检测图像中的路标 (停车标志.行人过路标志.建筑前方标志) 和交通信号灯 (红色和绿色灯).目标是识别这些对象中的哪一个出现在每个图像中.举例来说, 上述图则载有行人过路标志及红色交通灯. 您的10万标签图像是使用你的车的前置摄像头拍的.这也是你最关心的关于…