手写DataSet,DataTable】的更多相关文章

一:DataSet DataSet ds = new DataSet();//创建DataSet DataTable dt = new DataTable();//创建一个DataTalbe dt.Columns.Add(new DataColumn("id", typeof(int)));//为dt_dry表内建立Column dt.Columns.Add(new DataColumn("SQBM", typeof(string))); dt.Columns.Ad…
倾述下感受:8天16次驳回.这个惨不忍睹. 好了不说了,说多了都是泪. 直接上代码 : 这个里面的字段我是用动软生成的,感觉自己手写哪些字段太浪费时间了,说多了都是泪 ajax.model层的代码: using System; namespace Ajax.Model { /// <summary> /// SM_Class:实体类(属性说明自动提取数据库字段的描述信息) /// </summary> [Serializable] public partial class SM_C…
在做项目的时候总是要手动将集合转换成json每次都很麻烦,于是就尝试着写了一个公用的方法,用于转换List to json: using System; using System.Collections.Generic; using System.Text; using System.Data; using System.Reflection; using System.Collections; using System.Data.Common; public class ConvertJson…
[C#] ADO.NET #3-1 (GridView + DataReader + SqlCommand)完全手写.后置程序代码 之前有分享过一个范例 [C#] ADO.NET #3 (GridView + SqlDataSource)完全手写.后置程序代码,兼论 SqlDataSource与UpdateParameter/DeleteParameter的用法 后来,在网络上找到的人,就开始大量地为「SqlDataSource小精灵」动手写程序 这并非我的原意. 我的意思是,透过手写的程序代码…
前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP,准确率只有98.19%,然后不断改进,现在是99.78%,然而我看到排名第一是100%,心碎 = =,于是又改进了一版,现在把最好的结果记录一下,如果提升了再来更新. 手写数字集相信大家应该很熟悉了,这个程序相当于学一门新语言的“Hello World”,或者mapreduce的“WordCount…
http://www.cnblogs.com/fish-li/archive/2012/07/17/ClownFish.html 阅读目录 开始 ClownFish是什么? 比手写代码还快的执行速度 简单,一个调用完成你要的全部功能 方便,你需要的代码已经准备好了 定义数据实体类型不再是费力的体力劳动 通用,可以非常简单地实现对多种数据库的支持 灵活,SQL语句放在哪里随便你 XmlCommand是什么? 可监控,图形的工具会告诉你每个数据访问的细节 关于示例代码 最近花了二个月的业余时间重写了…
在上一篇博文中,我们对KNN算法思想及流程有了初步的了解,KNN是采用测量不同特征值之间的距离方法进行分类,也就是说对于每个样本数据,需要和训练集中的所有数据进行欧氏距离计算.这里简述KNN算法的特点: 优点:精度高,对异常值不敏感,无数据输入假定 缺点:计算复杂度高,空间复杂度高 适用数据范围:数值型和标称型(具有有穷多个不同值,值之间无序)    knn算法代码: #-*- coding: utf-8 -*- from numpy import * import operatorimport…
前言: SVM(支持向量机)一种训练分类器的学习方法 mnist 是一个手写字体图像数据库,训练样本有60000个,测试样本有10000个 LibSVM 一个常用的SVM框架 OpenCV3.0 中的ml包含了很多的ML框架接口,就试试了. 详细的OpenCV文档:http://docs.opencv.org/3.0-beta/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html mnist数据下载:http://yann.l…
kNN算法算是机器学习入门级绝佳的素材.书上是这样诠释的:“存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都有标签,即我们知道样本集中每一条数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征比较,算法提取样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前K个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数.最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类”. 优点:精度高.对异常…
为了简单起见,这里构造的系统只能识别数字0到9,需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:宽高是32像素的黑白图像.尽管采用文本格式存储图像不能有效地利用内存空间,但是为了方便理解,我们还是将图像转换为文本格式. ---1.收集数据:提供文本文件 该数据集合修改自“手写数字数据集的光学识别”-一文中的数据集合,该文登载于2010年10月3日的UCI机器学习资料库中http://archive.ics.uci.edu/ml.        ---2.准备数据:将图像转换为测试…