Jike_Time-决策树】的更多相关文章

最近在看<机器学习实战>的时候萌生了一个想法,自己去网上爬一些数据按照书上的方法处理一下,不仅可以加深自己对书本的理解,顺便还可以在github拉拉人气.刚好在看决策树这一章,书里面的理论和例子让我觉得这个理论和选择对象简直不能再贴切,看完长相看学历,看完学历看收入.如果可以从婚恋网站上爬取女性的数据信息,手动给她们打标签,并根据这些数据构建决策树,不就可以找出自己的择偶模式了吗!github项目:huatian-funny,下面就详细的阐释一下. 数据爬取 之前在世纪佳缘上爬取过类似的数据,…
决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(…
已知:流感训练数据集,预定义两个类别: 求:用ID3算法建立流感的属性描述决策树 流感训练数据集 No. 头痛 肌肉痛 体温 患流感 1 是(1) 是(1) 正常(0) 否(0) 2 是(1) 是(1) 高(1) 是(1) 3 是(1) 是(1) 很高(2) 是(1) 4 否(0) 是(1) 正常(0) 否(0) 5 否(0) 否(0) 高(1) 否(0) 6 否(0) 是(1) 很高(2) 是(1) 7 是(1) 否(0) 高(1) 是(1) 原理分析: 在决策树的每一个非叶子结点划分之前,先…
决策树是什么 决策树是基于树结构来进行决策,这恰是人类在面临决策问题时一种很自然的处理机制.例如,我们要对"这是好瓜吗?"这样的问题进行决策时,通常会进行一系列的判断或"子决策":我们先看"它是什么颜色?",如果是"青绿色",则我们再看"它的根蒂是什么形态?",如果是"蜷缩",我们再判断"它敲起来是什么声音?",最后我们得出决策:这是一个好瓜.这个决策如图所示: 决策…
id3:无法直接处理数值型数据,可以通过量化方法将数值型数据处理成标称型数据,但涉及太多特征划分,不建议 决策树:的最大优点在于可以给出数据的内在含义,数据形式非常容易理解: 决策树介绍:决策树分类器是带有种植的流程图,终止块表示分类结果 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不明感,可以处理不相关的数据:可以将此分类器存储于硬盘上,是个持久化的分类器 缺点:可能会发生过度匹配问题 使用数据类型:数值型和标称型 knn:不便于展现数据的内在含义:每用一次都要学习,不是持久化分类器…
1.安装graphviz.下载地址在:http://www.graphviz.org/.如果你是linux,可以用apt-get或者yum的方法安装.如果是windows,就在官网下载msi文件安装.无论是linux还是windows,装完后都要设置环境变量,将graphviz的bin目录加到PATH,比如我是windows,将C:/Program Files (x86)/Graphviz2.38/bin/加入了PATH 2.安装python插件graphviz: pip install gra…
决策树是一种常见的分类与回归机器学习算法,由于其模型表达性好,便于理解,并能取得较好的效果,而受到广泛的应用.下图是一个简单的决策树,决策树每个非叶子节点包含一个条件,对于具有连续值的特征,该条件为一个上界,如果实例对应的特征值小于该上界则被划分到左子节点,否则被划分到右子节点,对于具有离散值的特征,该条件为一个子集,如果实例对应的特征值属于该子集则被划分到左子节点,否则被划分到右子节点.如此下去,一个实例从根节点开始,不断地被划分,直到叶子节点.对于分类问题,叶子节点输出其类别,对于回归问题,…
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布,学习思想包括ID3,C4.5,CART(摘自<统计学习方法>). 1.2 Bagging :基于数据随机重抽样的集成方法(Ensemble methods),也称为自举汇聚法(boostrap aggregating),整个数据集是…
1.Example 使用Spark MLlib中决策树分类器API,训练出一个决策树模型,使用Python开发. """ Decision Tree Classification Example. """ from __future__ import print_function from pyspark import SparkContext from pyspark.mllib.tree import DecisionTree, Decisi…
谈完数据结构中的树(详情见参照之前博文<数据结构中各种树>),我们来谈一谈机器学习算法中的各种树形算法,包括ID3.C4.5.CART以及基于集成思想的树模型Random Forest和GBDT.本文对各类树形算法的基本思想进行了简单的介绍,重点谈一谈被称为是算法中的“战斗机”,机器学习中的“屠龙刀”的GBDT算法. 1. 决策树的模型 决策树是一种基本的分类与回归方法,它可以被认为是一种if-then规则的集合.决策树由节点和有向边组成,内部节点代表了特征属性,外部节点(叶子节点)代表了类别…