2019.10.29 CSP%您赛第四场t2】的更多相关文章

我太菜了我竟然不会分层图最短路 __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________…
我写不动前两个了. 原谅一下. __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________…
\(CSP\)凉心模拟^_^ --题源\(lqx.lhc\)等各位蒟蒻 题目名称 比赛 传递消息 开关灯 源文件名 \(competition.cpp\) \(message.cpp\) \(light.cpp\) 输入文件名 \(competition.in\) \(message.in\) \(light.in\) 输出文件名 \(competition.out\) \(message.out\) \(light.out\) 测试点时限 \(1s\) \(1s\) \(2s\) 内存限制 \…
题目描述 Description 精灵心目中亘古永恒的能量核心崩溃的那一刻,Bzeroth 大陆的每个精灵都明白,他们的家园已经到了最后的时刻.就在这危难关头,诸神天降神谕,传下最终兵器——潘少拉魔盒.然而当精灵们准备打开魔盒时,魔盒的守护灵出现在精灵们面前:“如果你们想要拯救世界,必须要先解决这个困难的问题:定义一个 N 阶数列 A 为神奇数列当且仅当对所有2≤i≤N−1 ,都有 Ai−1+Ai+1≥2×Ai.现在有一个N阶正整数列B ,请计算将 B 数列均匀随机打乱之后,得到的数列是神奇数列…
春训团队赛第四场 ID A B C D E F G H I J K L M AC O O O O O O O O O 补题 ? ? O O 传送门 题目链接(CF Gym102021) 题解链接(pdf) 代码 & 简易题解 [A]:LCA 给定一个格状迷宫,保证任意点均可达,且任意两格点间有且仅有一条简单路径. 给定一组移动序列,求按照这个序列走的累计路程. 按照题意对图预处理,得到一棵树,对于每对询问求 \(\text{LCA}\) 的同时求距离,累加即为答案. 一开始 \(\text{RE…
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\(w_i\)的代价.现在要通过删去一些边,使得剩下的满足对于这个图的任意一些点,这些点之间互联的边数小于这些点的总点数.求总代价最小值 思路: 不难发现答案为整张图代价和-最大生成森林代价和. 时间复杂度\(\mathcal O(m\alpha(n))\). 源代码: #include<cstdio…
初赛需要的知识点整理如下: (1)计算机的硬件组成与基本常识 (2)单位/进制的转换 (3)进制/逻辑运算相关 (4)概率与期望 (5)排序的各种性质 (6)简单数据结构的使用(栈.队列.链表等) (7)简单树论和图论,各种图的性质 (8)CSP竞赛相关 (9)计算机语言/软件相关 (10)时间复杂度的计算 (11)时间点/时事/荣誉奖项相关 (12)简单计数(字符串.图论等) (13)网络协议相关 (14)其它各种拼人品的题 以上选择. (1)复杂计数 (2)逻辑推理相关 (3)手模各种算法…
得分: \(70+60+0=130\)(\(T3\)来不及打了,结果爆\(0\)) \(T1\):简单的求和(点此看题面) 原题: [HDU4473]Exam 这道题其实就是上面那题的弱化版,只不过把多组数据改成了单次询问. 题解可以参考上面给出的链接. 比赛时我没想到可以这么做,于是写了个除法分块,交上去\(70\)分. \(CJJ\)奆佬写了一个传说中的\(cjj\)筛,结果\(80\)分\(ORZ\). 代码如下: #include<bits/stdc++.h> #define LL l…
预处理 考虑模数\(10\)是合数不好做,所以我们可以用一个常用套路: \(\prod_{i=l}^ra_i\equiv x(mod\ 10)\)的方案数等于\(\prod_{i=l}^ra_i\equiv x(mod\ 2)\)的方案数乘上\(\prod_{i=l}^ra_i\equiv x(mod\ 5)\)的方案数. 状态设置 考虑接下来怎么求. 既然现在模数是质数,而在模质数意义下的逆元是唯一的,除了\(0\)没有逆元,因此只要特殊考虑\(0\). 设\(f_{i,j}\)表示 将区间\…
找规律 设\(p_i=a_{i+1}-a_i\),则答案就是\(\sum_{i=1}^{n-1}p_i\). 考虑若将\(a_i\)加上\(x\)(边界情况特殊考虑),就相当于是将\(p_{i-1}\)加\(x\),\(p_i\)减\(x\). 先考虑\(p_{i-1}\)加\(x\)所造成的影响: 当\(p_{i-1}\ge0\)时,就相当于将答案加上\(x\). 当\(-x\le p_{i-1}<0\)时,原先的答案是\(-p_{i-1}\),新的答案是\(x+p_{i-1}\),所以答案加…