典型神经网络模型:(图片来源:https://github.com/madalinabuzau/tensorflow-eager-tutorials) 保持更新,更多内容请关注 cnblogs.com/xuyaowen;…
# 手写数字识别 ----卷积神经网络模型 import os import tensorflow as tf #部分注释来源于 # http://www.cnblogs.com/rgvb178/p/6052541.html from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets("/tmp/data/", one_hot=True) '''获取程序集'''…
神经网络模型的训练过程其实质上就是神经网络参数的设置过程 在神经网络优化算法中最常用的方法是反向传播算法,下图是反向传播算法流程图: 从上图可知,反向传播算法实现了一个迭代的过程,在每次迭代的开始,先需要选取一小部分训练数据,这一小部分数据叫做一个batch.然后这一个batch会通过前向传播算法得到神经网络的预测结果.计算出当前神经网络的预测答案与正确答案之间的差距(有监督学习,在训练时有一个标注好的数据集),最后根据预测值和真实值之间的差距,反向传播算法会相应的更新神经网络参数的取值,使在这…
首先看一下卷积神经网络模型,如下图: 卷积神经网络(CNN)由输入层.卷积层.激活函数.池化层.全连接层组成,即INPUT-CONV-RELU-POOL-FC池化层:为了减少运算量和数据维度而设置的一种层. 代码如下: n_input = 784 # 28*28的灰度图 n_output = 10 # 完成一个10分类的操作 weights = { #'权重参数': tf.Variable(tf.高期([feature的H, feature的W, 当前feature连接的输入的深度, 最终想得到…
初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构建CNN[待学习] 全连接+各种优化[待学习] BN层[待学习] 先解释以下MNIST数据集,训练数据集有55,000 条,即X为55,000 * 784的矩阵,那么Y为55,000 * 10的矩阵,每个图片是28像素*28像素,带有标签,Y为该图片的真实数字,即标签,每个图片10个数字,1所在位置…
本节涉及的知识点: 1.在程序中查看变量的取值 2.张量 3.用张量重新组织输入数据 4.简化的神经网络模型 5.标量.多维数组 6.在TensorFlow中查看和设定张量的形态 7.用softmax函数规范可变参数 8.小结:线性问题 一.在程序中查看变量的取值 x = 1 y = 2.2 z = "adc" print("x is: %d" % x) print("y is: %f" % y) print("z is: %s&quo…
机器之心报道 作者:邱陆陆 8 月中旬,谷歌大脑成员 Martin Wicke 在一封公开邮件中宣布,新版本开源框架——TensorFlow 2.0 预览版将在年底之前正式发布.今日,在上海谷歌开发者大会上,机器之心独家了解到一个重大的改变将会把 Eager Execution 变为 TensorFlow 默认的执行模式.这意味着 TensorFlow 如同 PyTorch 那样,由编写静态计算图全面转向了动态计算图. 谷歌开发者大会 在谷歌开发者大会的第二天,主会场全天都将进行 TensorF…
Keras是基于Tensorflow等底层张量处理库的高级API库.它帮我们实现了一系列经典的神经网络层(全连接层.卷积层.循环层等),以及简洁的迭代模型的接口,让我们能在模型层面写代码,从而不用仔细考虑模型各层张量之间的数据流动. 但是,当我们有了全新的想法,想要个性化模型层的实现,Keras的高级API是不能满足这一要求的,而换成Tensorflow又要重新写很多轮子,这时,Keras的后端就派上用场了.Keras将底层张量库的函数功能统一封装在“backend”中,用户可以用统一的函数接口…
首先看一下神经网络模型,一个比较简单的两层神经. 代码如下: # 定义参数 n_hidden_1 = 256 #第一层神经元 n_hidden_2 = 128 #第二层神经元 n_input = 784 #输入大小,28*28的一个灰度图,彩图没有什么意义 n_classes = 10 #结果是要得到一个几分类的任务 # 输入和输出 x = tf.placeholder("float", [None, n_input]) y = tf.placeholder("float&q…
人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档前链数目.文档锚文本信息,为找特征隐藏信息,隐藏层神经元数目设置少于输入特征数目,经大量样本训练能还原原始特征模型,相当用少于输入特征数目信息还原全部特征,压缩,可发现某些特征之间存在隐含相关性,或者有某种特殊关系.让隐藏层神经元数目多余输入特征数目,训练模型可展示特征之间某种细节关联.输出输入一致…