最邻近规则分类KNN算法】的更多相关文章

理论学习: 3. 算法详述        3.1 步骤:      为了判断未知实例的类别,以所有已知类别的实例作为参照      选择参数K      计算未知实例与所有已知实例的距离      选择最近K个已知实例      根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别        3.2 细节:      关于K      关于距离的衡量方法:          3.2.1 Euclidean Distance(欧式距离) 定…
例子: 求未知电影属于什么类型: 算法介绍: 步骤:  为了判断未知实例的类别,以所有已知类别的实例作为参照      选择参数K      计算未知实例与所有已知实例的距离      选择最近K个已知实例      根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别 细节: 关于K的选择 关于距离的衡量方法: 其他距离衡量:余弦值(cos), 相关度 (correlation), 曼哈顿距离 (Manhattan distance)  …
上节介绍了机器学习的决策树算法,它属于分类算法,本节我们介绍机器学习的另外一种分类算法:最近邻规则分类KNN,书名为k-近邻算法. 它的工作原理是:将预测的目标数据分别跟样本进行比较,得到一组距离的数据,取最近的K个数据,遵循少数服从多数的原则,从而获得目标数据的分类. 简单的说,就是[近朱者赤,近墨者者黑],下面我们一起通过KNN算法来演示这句名言的内涵. 案例背景: 我的一个表弟,自幼聪明过人,读书的时候称得上名列前茅,父母以此为骄傲.但是好景不长,自从参加工作后,结识了几个狐朋狗友,从此进…
KNN最邻近规则,主要应用领域是对未知事物的识别,即推断未知事物属于哪一类,推断思想是,基于欧几里得定理,推断未知事物的特征和哪一类已知事物的的特征最接近: K近期邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比較成熟的方法,也是最简单的机器学习算法之中的一个.该方法的思路是:假设一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上仅仅根据最邻近…
KNN最邻近规则,主要应用领域是对未知事物的识别,即判断未知事物属于哪一类,判断思想是,基于欧几里得定理,判断未知事物的特征和哪一类已知事物的的特征最接近: K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或…
 自写代码: # Author Chenglong Qian from numpy import * #科学计算模块 import operator #运算符模块 def createDaraSet(): group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])#创建4行2列的数组 labels=['A',"A",'B','B']#标签列表 return group,labels group,labels=createDaraSet() '''k…
1 数据集介绍:   虹膜     150个实例   萼片长度,萼片宽度,花瓣长度,花瓣宽度 (sepal length, sepal width, petal length and petal width)   类别: Iris setosa, Iris versicolor, Iris virginica.         2. 利用Python的机器学习库sklearn: SkLearnExample.py   from sklearn import neighbors from skle…
原理:计算当前点(无label,一般为测试集)和其他每个点(有label,一般为训练集)的距离并升序排序,选取k个最小距离的点,根据这k个点对应的类别进行投票,票数最多的类别的即为该点所对应的类别.代码实现(数据集采用的是iris): import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn import n…
KNN(最邻近规则分类K-Nearest-Neighibor)KNN算法 1. 综述      1.1 Cover和Hart在1968年提出了最初的邻近算法      1.2 分类(classification)算法      1.3 输入基于实例的学习(instance-based learning), 懒惰学习(lazy learning) 主要在一开始没有建立任何模型来检测输入的数值,在需要分类的时候进行及时分类.   2. 例子:                            …
版权所有,可以转载,禁止修改.转载请注明作者以及原文链接. 一.KNN算法概述 KNN是Machine Learning领域一个简单又实用的算法,与之前讨论过的算法主要存在两点不同: 它是一种非参方法.即不必像线性回归.逻辑回归等算法一样有固定格式的模型,也不需要去拟合参数. 它既可用于分类,又可应用于回归. KNN的基本思想有点类似“物以类聚,人以群分”,打个通俗的比方就是“如果你要了解一个人,可以从他最亲近的几个朋友去推测他是什么样的人”. 在分类领域,对于一个未知点,选取K个距离(可以是欧…