详见:http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/net_surgery.ipynb 假设使用标准的caffe参考ImageNet模型“CaffeNet”,将其转换为一个完全的卷积网络,以实现对大输入的高效.密集的推断.该模型生成一个分类图,它涵盖给定的输入大小,而不是单个分类.例如输入为451*451图片时,使用8*8全卷积分类,(也就是每8*8输出一个),得到了64倍个数的输出结果.时间仅仅用了3倍.通…
目录 0. Paper link 1. Overview 2. position-sensitive score maps 2.1 Background 2.2 position-sensitive score maps 3. Architecture 3.1 backbone 3.2 Position-sensitive score maps & Position-sensitive RoI pooling 3.3 Training 3.4 Inference 3.5 À trous algo…
Fully Convolutional Networks for Semantic Segmentation 译文 Abstract   Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed…
全卷积网络Fully Convolutional Networks (FCN)实战 使用图像中的每个像素进行类别预测的语义分割.全卷积网络(FCN)使用卷积神经网络将图像像素转换为像素类别.与之前介绍的卷积神经网络不同,FCN通过转置卷积层将中间层特征映射的高度和宽度转换回输入图像的大小,使得预测结果在空间维度(高度和宽度)与输入图像一一对应.给定空间维度上的位置,信道维度的输出将是对应于该位置的像素的类别预测. 将首先导入实验所需的包或模块,然后解释转置卷积层. %matplotlib inl…
Xiang Bai--[CVPR2016]Multi-Oriented Text Detection with Fully Convolutional Networks 目录 作者和相关链接 方法概括 方法细节 创新点和贡献 实验结果 问题讨论 总结与收获点 作者和相关链接 作者: paper下载 方法概括 Step 1--文本块检测: 先利用text-block FCN得到salient map,再对salient map进行连通分量分析得到text block: Step 2--文本线形成:…
发表于2015年这篇<Fully Convolutional Networks for Semantic Segmentation>在图像语义分割领域举足轻重. 1 CNN 与 FCN 通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature map)映射成一个固定长度的特征向量.以AlexNet为代表的经典CNN结构适合于图像级的分类和回归任务,因为它们最后都期望得到整个输入图像的一个数值描述(概率),比如AlexNet的ImageNet模型输出一个1000维的…
论文源址:https://arxiv.org/abs/1605.06409 开源代码:https://github.com/PureDiors/pytorch_RFCN 摘要 提出了基于区域的全卷积网络,用于精确高效的目标检测,相比于基于区域的检测器(Fast/Faster R-CNN),这些检测器重复的在子区域进行数百次计算,而本文在整张图像上进行共享计算.因此,本文提出了基于位置敏感分数图用于解决图像分类中的平移不变性及目标检测中的平移可变性之间的矛盾.将图像分类网络处理为全卷积网络用于目标…
R-FCN: Object Detection via Region-based Fully Convolutional Networks 摘要 我们提出了基于区域的全卷积网络,以实现准确和高效的目标检测.与先前的基于区域的检测器(如Fast/Faster R-CNN [6,18])相比,这些检测器应用昂贵的每个区域子网络数百次,我们的基于区域的检测器是全卷积的,几乎所有计算都在整张图像上共享.为了实现这一目标,我们提出了位置敏感分数图,以解决图像分类中的平移不变性与目标检测中的平移变化之间的困…
一.FCN中的CNN 首先回顾CNN测试图片类别的过程,如下图: 主要由卷积,pool与全连接构成,这里把卷积与pool都看作图中绿色的convolution,全连接为图中蓝色的fully connected.卷积主要是获取高维特征,pool使图片缩小一半,全连接与传统神经网络相似作为权值训练,最后通过softmax输出概率最高的类别.上图中nxn表示feature map(特征图)大小, 如原图大小为227x227,经过卷积与pool后得到55x55的特征图(一层的特征图可以有多个类别).注意…
如何评价 MSRA 视觉组最新提出的 Deformable ConvNets V2? <Deformable Convolutional Networks>是一篇2017年Microsoft Research Asia的研究.基本思想也是卷积核的采样方式是可以通过学习得到的.作者提出了两种新的op:deformable convolution和deformable roi pooling,主要是通过给传统卷积采样点加offsets的方式来获得新的采样点.来自:https://arxiv.org…