时间序列分析工具箱——timetk】的更多相关文章

目录 时间序列分析工具箱--timetk timetk 的主要用途 加载包 数据 timetk 教程: PART 1:时间序列机器学习 PART 2:转换 翻译自<Demo Week: Time Series Machine Learning with timetk> 原文链接:www.business-science.io/code-tools/2017/10/24/demo_week_timetk.html 时间序列分析工具箱--timetk timetk 的主要用途 三个主要用途: 时间…
目录 时间序列分析工具箱-- h2o + timetk h2o 的用途 加载包 安装 h2o 加载包 数据 教程:h2o + timetk,时间序列机器学习 时间序列机器学习 最终的胜利者是... 翻译自<Demo Week: Time Series Machine Learning with h2o and timetk> 原文链接:https://www.business-science.io/code-tools/2017/10/28/demo_week_h2o.html 文字和代码略有…
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/kMD8d5R/article/details/81977856 作者:徐瑞龙.量化分析师,R语言中文社区专栏作者 博客专栏: https://www.cnblogs.com/xuruilong100 本文翻译自<Demo Week: Tidy Forecasting with sweep> 原文链接: www.business-science.io/code-tools/2017/10/25/d…
目录 时间序列分析工具箱--tibbletime tibbletime 的用途 加载包 数据 教程:tibbletime 初始化一个 tbl_time 对象 时间序列函数 翻译自<Demo Week: Tidy Time Series Analysis with tibbletime> 原文链接:www.business-science.io/code-tools/2017/10/26/demo_week_tibbletime.html 注意:由于软件包的版本变化,部分代码被修改,文字有删减…
目录 时间序列分析工具箱--tidyquant tidyquant 的用途 加载包 tq_get:获得数据 从 Yahoo! Finance 获得股票数据 从 FRED 获得经济数据 使用 tq_transmute 和 tq_mutate 转换数据 tq_transmute tq_mutate 可用函数 时间序列分析工具箱--tidyquant 本文翻译自<Demo Week: class(Monday) <- tidyquant> 原文链接:http://www.business-sc…
时间序列分析必须建立在预处理的基础上…… 今天看了一条新闻体会到了网络日志的重要性…… 指数平滑法(Exponential Smoothing,ES)是布朗(Robert G..Brown)所提出,布朗.认为时间序列的态势具有稳定性或规则性,所以时间序列可被合理地顺势推延:他认为最近的过去态势,在某种程度上会持续的未来,所以将较大的权数放在最近的资料. ARIMA模型全称为差分自回归移动平均模型(Autoregressive Integrated Moving Average Model,简记A…
简介 在商业应用中,时间是最重要的因素,能够提升成功率.然而绝大多数公司很难跟上时间的脚步.但是随着技术的发展,出现了很多有效的方法,能够让我们预测未来.不要担心,本文并不会讨论时间机器,讨论的都是很实用的东西. 本文将要讨论关于预测的方法.有一种预测是跟时间相关的,而这种处理与时间相关数据的方法叫做时间序列模型.这个模型能够在与时间相关的数据中,寻到一些隐藏的信息来辅助决策. 当我们处理时序序列数据的时候,时间序列模型是非常有用的模型.大多数公司都是基于时间序列数据来分析第二年的销售量,网站流…
          题记:毕业一年多天天coding,好久没写paper了.在这动荡的日子里,也希望写点东西让自己静一静.恰好前段时间用python做了一点时间序列方面的东西,有一丁点心得体会想和大家分享下.在此也要特别感谢顾志耐和散沙,让我喜欢上了python. 什么是时间序列 时间序列简单的说就是各时间点上形成的数值序列,时间序列分析就是通过观察历史数据预测未来的值.在这里需要强调一点的是,时间序列分析并不是关于时间的回归,它主要是研究自身的变化规律的(这里不考虑含外生变量的时间序列). 为…
http://blog.csdn.net/pipisorry/article/details/52209377 其它时间序列处理相关的包 [P4J 0.6: Periodic light curve analysis tools based on Information Theory] [p4j github] pandas时序数据文件读取 dateparse = lambda dates: pd.datetime.strptime(dates, '%Y-%m')data = pd.read_c…
简介 时间序列简单的说就是各时间点上形成的数值序列,时间序列分析就是通过观察历史数据预测未来的值.预测未来股价走势是一个再好不过的例子了.在本文中,我们将看到如何在递归神经网络的帮助下执行时间序列分析.我们将根据过去5年的股价预测苹果公司之后的股价. 数据集 我们将使用从2013年1月1日到2017年12月31日的苹果股票价格作为训练集,2018年1月的价格作为测试集.所以,为了评估算法的效果,也要下载2018年1月的实际股票价格. 打开包含五年数据的苹果股票价格的训练文件后可以看到如下几列:“…