python 中好用的函数,random.sample等,持续更新 random.sample random.sample的函数原型为:random.sample(sequence, k),从指定序列中随机获取指定长度的片断.sample函数不会修改原有序列 import random list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] slice = random.sample(list, 5) # 从list中随机获取5个元素,作为一个片断返回 print(slic…
random() random()方法:返回随机生成的一个实数,它在[0,1)范围内 运用random()方法的语法: import random #random()方法不能直接访问,需要导入random模块,然后通过random静态对象调用该方法 random.random random.random()方法用于生成一个0到1的随机浮点数:0<=n<1.0 >>> import random >>> print "random():",…
import random list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for i in range(3): slice = random.sample(list, 5) # 从list中随机获取5个元素,作为一个片断返回 print(slice) print(list, '\n') # 原有序列并没有改变 输出结果如下,发现每一次的random.sample函数返回的5个元素不同…
1. np.stack((x_t, x_t, x_t, x_t), axis=2)  将图片进行串接的操作,使得图片的维度为[80, 80, 4] 参数说明: (x_t, x_t, x_t, x_t) 表示需要进行串接的图片, axis = 2 表示在第三个维度上进行串接操作 2. cv2.resize(x, [80, 80])  # 将图片的维度变化为80 * 80的维度 参数说明, x为输入的图片,80, 80表示图片变化的维度 3.cv2.cvtColor(x_t, tf.COLOR_RG…
1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数说明:pool_h1表示输入数据,4表示使用前后几层进行归一化操作,bias表示偏移量,alpha和beta表示系数 局部响应的公式 针对上述公式,做了一个试验代码: # 自己编写的代码, 对x的[1, 1, 1, 1]进行局部响应归一化操作,最后结果是相同的x = np.array([i for…
1.函数的不固定参数: #参数不是必填的.没有限制参数的个数.返回参数组的元组 def syz(*args): #参数组,不限制参数个数 #‘args’参数的名字可以随便命名 print(args) #username = args[0] #返回的参数放在元组中,通过下标来取值 #pwd = args[1] syz() syz('niuhan','sdfsdf',122) >>> () >>> ('niuhan', 'sdfsdf', 122) #元组 2.关键字参数…
此部分是 计算机视觉中的信号处理与模式识别 与其说是讲述,不如说是一些经典文章的罗列以及自己的简单点评.与前一个版本不同的是,这次把所有的文章按类别归了类,并且增加了很多文献.分类的时候并没有按照传统的分类方法,而是划分成了一个个小的门类,比如SIFT,Harris都作为了单独的一类,虽然它们都可以划分到特征提取里面去.这样做的目的是希望能突出这些比较实用且比较流行的方法.为了以后维护的方便,按照字母顺序排的序. 15. RANSAC随机抽样一致性方法,与传统的最小均方误差等完全是两个路子.在S…
import random k = random.sample(xrange(0x41, 0x5b), 26) print k import random k = random.sample(xrange(0x41, 0x5b), 26) print k k = [chr(x) for x in k] print k v = random.sample(xrange(1000000), 26) print v d = dict(zip(k, v)) print d 输出结果 </pre><…
1. random.shuffle(dataset) 对数据进行清洗操作 参数说明:dataset表示输入的数据 2.random.sample(dataset, 2) 从dataset数据集中选取2个数据 参数说明:dataset是数据, 2表示两个图片 3. random.choice(dataset) 从数据中随机抽取一个数据 参数说明: dataset 表示从数据中抽取一个数据 4. pickle.dump((v1,v2), f_path,pickle.HIGHEST_PROTOCOL)…
写脚本过程中用到了需要随机一段字符串的操作,查了一下资料,对于random.sample的用法,多用于截取列表的指定长度的随机数,但是不会改变列表本身的排序: list = [0,1,2,3,4] rs = random.sample(list, 2) print(rs) print(list) >>>[2, 4] #此数组随着不同的执行,里面的元素随机,但都是两个 >>>[0, 1, 2, 3, 4] 上面这种方法要求知道已知的数列,但是不能满足我在一定范围内,随机出…