Java 并查集Union Find】的更多相关文章

对于一组数据,主要支持两种动作: union isConnected public interface UF { int getSize(); boolean isConnected(int p,int q); void unionElements(int p,int q); } public class UnionFind1 implements UF{ private int[] id; public UnionFind1(int size){ id=new int[size]; for (…
概念: 并查集是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题.一些常见的用途有求连通子图.求最小生成树的Kruskal 算法和求最近公共祖先等. 操作: 并查集的基本操作有两个: Union(x, y):把元素x 和元素y 所在的集合合并,要求x 和y 所在的集合不相交,如果相交则不合并. Find(x):找到元素x 所在的集合的代表,该操作也可以用于判断两个元素是否位于同一个集合,只要将它们各自的代表比较一下就可以了. 实现: 并查集的实现原理也比较简单,就是使用树来表…
并查集代码 并查集优化⼀ 并查集优化⼆ 实战题⽬目1. https://leetcode.com/problems/number-of-islands/2. https://leetcode.com/problems/friend-circles/…
本题也是个标准的并查集题解. 操作完并查集之后,就是要找和0节点在同一个集合的元素有多少. 注意这个操作,须要先找到0的父母节点.然后查找有多少个节点的额父母节点和0的父母节点同样. 这个时候须要对每一个节点使用find parent操作.由于最后状态的时候,节点的parent不一定是本集合的根节点. #include <stdio.h> const int MAX_N = 30001; struct SubSet { int p, rank; }sub[MAX_N]; int N, M; v…
时间复杂度: O(log*n),近乎是O(1)级别的 UnionFind 接口: public interface UF { int getSize(); boolean isConnected(int p, int q); void unionElements(int p, int q); } 第一种: //quickFind public class UnionFind1 implements UF{ //id 这个数组中并没有存储数据的值,而是存储了数据所在的集合编号 private in…
最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻找n-1条边,恰好将这n个节点相连,并且这n-1条边的权值之和最小. 对于MST问题,通常常见的解法有两种:Prim算法   或者  Kruskal算法+并查集 对于最小生成树,一定要注意其定义是在无向连通图的基础上,如果在有向图中,那么就需要另外的分析,单纯用无向图中的方法是不能得出正确解的,这一…
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1854 没想到怎么做真是不应该,看到每个武器都有两个属性,应该要想到连边构图的!太不应该了! 构图之后,显然,一个有n个点的联通块要么有n - 1条边,要么有>=n条边(因为可能有重边).由于一把武器只能使用一次,也就是说一条边只能“属于”其连接的两个点的其中一个.当有n - 1条边时,这时一棵树,这棵树里的边可以满足任意的n - 1个点,因为随便找一个点拉成有根树,使每一条边都“属于”其儿…
预备知识 并查集 (Union Set) 一种常见的应用是计算一个图中连通分量的个数.比如: a e / \ | b c f | | d g 上图的连通分量的个数为 2 . 并查集的主要思想是在每个连通分量的集合中,选取一个代表,作为这个连通分量的根.根的选取是任意的,因为连通分量集合中每个元素都是等价的.我们只需关心根的个数(也是连通分量的个数).例如: a e / | \ / \ b c d f g 也就是说:root[b] = root[c] = root[d] = a 而 root[a]…
(最好在电脑下浏览本篇博客...手机上看代码不方便) 当时学的时候看的一本印度的数据结构书(好像是..有点忘了..反正跟同学们看的都不一样...)...里面把本文提到的所有情况都提到了,我这里只是重复实现,再加上一些个人的理解的图解,最后附上两道并查集的题来帮助理解. 并查集:基本 介绍并查集->     并查集是一种数据结构, 常用于描述集合,经常用于解决此类问题:某个元素是否属于某个集合,或者 某个元素 和 另一个元素是否同属于一个集合 思路 数组里存的数字代表所属的集合.比如arr[4]=…
Java实现并查集,合并时采用路径压缩算法. 如果合并时使用循环修改的方法,一次合并的时间复杂度就为N,无法接受 public class Union { public int[] id;//对应索引所在的集 public int[] sz;//所在集的size,合并时小集合大集 public int count; public Union(int N){ id = new int[N]; for(int i=0;i<id.length;i++){ id[i] = i; } }//初始化,每个节…