最大熵模型和EM算法】的更多相关文章

一.极大似然已经发生的事件是独立重复事件,符合同一分布已经发生的时间是可能性(似然)的事件利用这两个假设,已经发生时间的联合密度值就最大,所以就可以求出总体分布f中参数θ 用极大似然进行机器学习有监督学习:最大熵模型无监督学习:GMM 二.熵和信息自信息i(x) = -log(p(x)) 信息是对不确定性的度量.概率是对确定性的度量,概率越大,越确定,可能性越大.信息越大,越不确定. 熵是对平均不确定性的度量.熵是随机变量不确定性的度量,不确定性越大,熵值越大.H(x) = -∑p(x)log⁡…
这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示.与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,…,k}可以选取.而且我们认为在给定后,满足多值高斯分布,即.由此可以得到联合分布. 整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个,然后根据所对应的k个多值…
使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示.与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,-,k}可以选取.而且我们认为在给定后,满足多值高斯分布,即.由此可以得到联合分布. 整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个,然后根据所对应的k个多值高斯分布…
https://www.cnblogs.com/Denise-hzf/p/6612212.html 一.隐含马尔可夫模型(Hidden Markov Model) 1.简介 隐含马尔可夫模型并不是俄罗斯数学家马尔可夫发明的,而是美国数学家鲍姆提出的,隐含马尔可夫模型的训练方法(鲍姆-韦尔奇算法)也是以他名字命名的.隐含马尔可夫模型一直被认为是解决大多数自然语言处理问题最为快速.有效的方法. 2.马尔可夫假设 随机过程中各个状态St的概率分布,只与它的前一个状态St-1有关,即P(St|S1,S2…
<统计学习方法>这本书上写的太抽象,可参考这位大神的:http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html…
混合高斯模型和EM算法 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与K-means一样,给定的训练样本是,我们将隐含类别标签用表示.与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,…,k}可以选取.而且我们认为在给定后,满足多值高斯分布,即.由此可以得到联合分布. 整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个,…
极大似然估计是利用已知的样本结果,去反推最有可能(最大概率)导致这样结果的参数值,也就是在给定的观测变量下去估计参数值.然而现实中可能存在这样的问题,除了观测变量之外,还存在着未知的隐变量,因为变量未知,因此无法直接通过最大似然估计直接求参数值.EM算法是一种迭代算法,用于含有隐变量的概率模型的极大似然估计,或者说是极大后验概率估计. 1.经典的三硬币模型 引入一个例子来说明隐变量存在的问题.假设有3枚硬币,分别记作A,B,C.这些硬币正面出现的概率分别是π,p,q.我们的实验过程如下,先投掷硬…
公号:码农充电站pro 主页:https://codeshellme.github.io 之前介绍过K 均值算法,它是一种聚类算法.今天介绍EM 算法,它也是聚类算法,但比K 均值算法更加灵活强大. EM 的全称为 Expectation Maximization,中文为期望最大化算法,它是一个不断观察和调整的过程. 1,和面过程 我们先来看一下和面的过程. 通常情况下,如果你事先不知道面与水的比例,和面过程可能是下面这样: 先放入一些面和水. 将面团揉拌均匀. 观察面团的稀稠程度:如果面团比较…
Mallory   网络模型概念浅析 网络模型一般是指OSI七层参考模型和TCP/IP四层参考模型. #只是一种设计==模型# Open System Interconnect的缩写,意为开放式系统互联. 一般都叫OSI参考模型,是ISO(国际标准化组织)组织在1985年研究的网络互联模型.该体系结构标准定义了网络互连的七层框架(物理层.数据链路层.网络层.传输层.会话层.表示层和应用层),即ISO开放系统互连参考模型.在这一框架下进一步详细规定了每一层的功能,以实现开放系统环境中的互连性.互操…
Java内存模型和JVM内存管理   一.Java内存模型: 1.主内存和工作内存(即是本地内存): Java内存模型的主要目标是定义程序中各个变量的访问规则,即在JVM中将变量存储到内存和从内存中取出变量这样的底层细节.此处的变量与Java编程里面的变量有所不同步,它包含了实例字段.静态字段和构成数组对象的元素,但不包含局部变量和方法参数,因为后者是线程私有的,不会共享,当然不存在数据竞争问题(如果局部变量是一个reference引用类型,它引用的对象在Java堆中可被各个线程共享,但是ref…
JMM内存模型和JVM内存结构 JAVA内存模型(Java Memory Model) Java内存模型,一般指的是JDK 5 开始使用的新的内存模型,主要由JSR-133: JavaTM Memory Model and Thread Specification 描述. JMM就是一种符合内存模型规范的,屏蔽了各种硬件和操作系统的访问差异的,保证了Java程序在各种平台下对内存的访问都能保证效果一致的机制及规范. 内存模型可以理解为在特定的操作协议下,对特定的内存或者高速缓存进行读写访问的过程…
回顾一下前文<三分钟掌握共享内存模型和 Actor模型> Actor vs CSP模型 传统多线程的的共享内存(ShareMemory)模型使用lock,condition等同步原语来强行规定进程的执行顺序. Actor模型,是基于消息传递的并发模型,强调的是Actor这个工作实体,每个Actor自行决定消息传递的方向(要传递的ActorB),通过消息传递形成流水线. 本文现在要记录的是另一种基于消息传递的并发模型: CSP(communicating sequential process顺序…
EM算法简介 EM算法其实是一类算法的总称.EM算法分为E-Step和M-Step两步.EM算法的应用范围很广,基本机器学习需要迭代优化参数的模型在优化时都可以使用EM算法. EM算法的思想和过程 E-Step:E的全称是Expectation,即期望的意思.E-step也是获取期望的过程.即根据现有的模型,计算各个观测数据输入到模型中的计算结果.这个过程称为期望值计算过程,即E过程. M-Step:M的全称是Maximization,即最大化的意思.M-step也是期望最大化的过程.得到一轮期…
EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求极大(Maximization). EM算法的引入 给一些观察数据,可以使用极大似然估计法,或贝叶斯估计法估计模型参数.但是当模型含有隐变量时,就不能简单地使用这些方法.有些时候,参数的极大似然估计问题没有解析解,只能通过迭代的方法求解,EM算法就是可以用于求解这个问题的一种迭代算法. EM算法 输…
[题外话] 上一篇文章介绍了3D开发基础与XNA开发程序的整体结构,以及使用Model类的Draw方法将模型绘制到屏幕上.本文接着上一篇文章继续,介绍XNA中模型的结构.BasicEffect的使用以及用户输入和界面显示的方式等,本文尽量把遇到的概念都解析清楚,但又避开复杂的数学方面的知识,希望对没有接触过3D开发的同学有所帮助. [系列索引] 从零3D基础入门XNA 4.0(1)——3D开发基础 从零3D基础入门XNA 4.0(2)——模型和BasicEffect [文章索引] Model模型…
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 k-means算法是一种得到最广泛使用的聚类算法. 它是将各个聚类子集内的所有数据样本的均值作为该聚类的代表点. 2.算法推导 2.1 k-means 计算过程: 深入:如何验证收敛: 我们定义畸变函数(distortion function)如下: J函数表示每个样本点到其质心的距离平方和.K-means是要将J调整到最小.假设当前J没有达到最小值,那么首先可以固定每…
NOSQL数据模型和CAP原理 http://blog.sina.com.cn/s/blog_7800d9210100t33v.html 我本来一直觉得NoSQL其实很容易理解的,我本身也已经对NoSQL有了非常深入的研究,但是在最近准备YunTable的Chart的时候,发现NoSQL不仅非常博大精深,而且我个人对NoSQL的理解也只是皮毛而已,但我还算是一个“知耻而后勇”的人,所以经过一段时间的学习之后,从本系列第六篇开始,就将和大家聊聊NoSQL,而本篇将主要给大家做一下NoSQL数据库的…
以下的内容和之后的几篇博客只是比较初级的介绍,想要深入学习的话建议自己钻研<TCP/IP详解 卷1:协议> 1.ISO/OSI七层模型    下四层是为数据传输服务的,物理层是真正的传输数据的,数据链路层.网络层.传输层主要是写入对应数据的传输信息的        物理层:比特            设备之间的比特流的传输.物理接口.电气特性        数据链路层:帧            保存的最主要的信息是网卡的 mac 地址,mac 地址负责局域网通信的,发件人和收件人的mac 地址…
EM算法总结 - The EM Algorithm EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法.在之后的MT中的词对齐中也用到了.在Mitchell的书中也提到EM可以用于贝叶斯网络中. 下面主要介绍EM的整个推导过程. 1. Jensen不等式 回顾优化理论中的一些概念.设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数.当x是向量时,如果其hessian矩阵H是半正定的(),那么f是凸函数.如果或者,那…
黑马程序员:Java培训.Android培训.iOS培训..Net培训 JAVA线程-内存模型和volatile详解 一.单核内存模型 1.程序运行时,将临时数据存放到Cache中 2.将CPU计算所需要的数据从Cache中拷贝一份到H Cache中 3.CPU直接从H Cache中读取数据进行计算 4.CPU将计算的结果写入H Cache中 5.H Cache将最新的结果值涮入Cache中(何时写入不确定) 6.将Cache中结果数据写回程序(如果有需要,例如文件.数据库) 需要H Cache…
转自:http://blog.csdn.net/abcjennifer/article/details/8198352 在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明.本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明. 1. GMM模型: 每个 GMM 由 K 个 Gaussian 分布组成,每个 Gauss…
目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(4):EM算法证明 1. 概述 上一篇博客我们已经讲过了EM算法,EM算法由于其普适性收到广泛关注,高频率地被运用在各种优化问题中.但是EM算法为什么用简单两步就能保证使得问题最优化呢?下面我们就给出证明. 2. 证明 现在我们已经对EM算法有所了解,知道其以两步(E-step和M-step)为周期,迭代进行,直到收敛为止.那问题就是,在一个周期内,目…
目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(3):EM算法运用 1. 内容 EM算法全称为 Expectation-Maximization 算法,其具体内容为:给定数据集$\mathbf{X}=\{\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_n\}$,假定这个数据集是不完整的,其还缺失了一些信息Y,一个完整的样本Z = {X,Y}.而且假定如果我们能得到完…
目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(2):GMM训练算法 1. 简介 GMM模型全称为Gaussian Mixture Model,即高斯混合模型.其主要是针对普通的单个高斯模型提出来的.我们知道,普通高斯模型对实际数据拟合效果还不错,但是其有一个致命的缺陷,就是其为单峰函数,如果数据的真实分布为复杂的多峰分布,那么单峰高斯的拟合效果就不够好了. 与单峰高斯模型不同,GMM模型是多个高斯…
目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(1) : K-means算法 1. 简介 K-means算法是一类无监督的聚类算法,目的是将没有标签的数据分成若干个类,每一个类都是由相似的数据组成.这个类的个数一般是认为给定的. 2. 原理 假设给定一个数据集$\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2,...,\mathbf{x}_N \}$, 和类的个数K…
1. 概述 本节将介绍两类问题的不同解决方案.其一是通过随机的搜索算法对某一函数的取值进行比较,求取最大/最小值的过程:其二则和积分类似,是使得某一函数被最优化,这一部分内容的代表算法是EM算法.(书中章节名称为Optimization) 2. 随机搜索 对于优化,一本很有名的书是Stephen Boyd 的凸优化(Convex Optimization).但看过的人可能思维会受到一点限制.最简单.最基本的求最大/最小值的算法,除了直接求解,就是把所有的可能值枚举出来,然后求最大/最小就可以了,…
EM算法的推导…
7.异步IO 上面两篇文章中,我们分别讲解了阻塞式同步IO.非阻塞式同步IO.多路复用IO 这三种IO模型,以及JAVA对于这三种IO模型的支持.重点说明了IO模型是由操作系统提供支持,且这三种IO模型都是同步IO,都是采用的"应用程序不询问我,我绝不会主动通知"的方式. 异步IO则是采用"订阅-通知"模式:即应用程序向操作系统注册IO监听,然后继续做自己的事情.当操作系统发生IO事件,并且准备好数据后,在主动通知应用程序,触发相应的函数: 和同步IO一样,异步IO…
http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html http://blog.sina.com.cn/s/blog_a7da5cda010158b3.html EM算法 一个简单的例子 EM算法有它的缺陷:“坏”的参数初始值设置可以导致EM算法陷进一些局最优点:EM算法的收敛速度比较慢:只有在不存在直接解决的算法的情况下,才应该考虑使用EM算法,因为它并不是解决限制条件下优化问题的高效方法.…
Jensen不等式 http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html 回顾优化理论中的一些概念.设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数.当x是向量时,如果其hessian矩阵H是半正定的(),那么f是凸函数.如果或者,那么称f是严格凸函数. Jensen不等式表述如下: 如果f是凸函数,X是随机变量,那么 特别地,如果f是严格凸函数,那么当且仅当,也就是说X是常量. 这里我们将简写为. 似然…