MapReduce过程<原创>】的更多相关文章

一.预处理阶段 二.Map阶段 一个Map任务被JobTracker(管家)分配到多个TaskTracker(弟弟)执行,如下图所示,弟弟的map()只负责拆分,虽然map()输出两个相同的键值对,但它并不会对两个重复的键值对进行合并,而且输出的键值对也是无序的,没有按照字母顺序排列.而这些工作都会交给Shuffle(洗牌)阶段去做. 三.Shuffle阶段 Shuffle阶段实际上并不是一个和Map阶段和Reduce阶段独立的阶段,实际上它分为Map端的Shuffle阶段和Reduce端的阶段…
首先,map的输入数据默认一个一个的键值对,键就是每一行首字母的偏移量,值就是每一行的值了. 然后每一个输入的键值对都会用我们定义的map函数去处理,这里用wordcount来举例的话就是,每一个键值对的值都按对应的分隔符分隔成每一个单词作为输出的键,值都为1. 接着,进入mapshuffle阶段,map函数处理后的数据会被放到一个环形缓冲区中,当放置的环形缓冲区的容量(默认100MB,可自定义)达到阈值(默认80%,可自定义)时就会进入溢写, 在真正溢写到本地磁盘前,会对要溢写的数据进行分区(…
本文基于hadoop2.x架构详细描述了mapreduce的执行过程,包括partition,combiner,shuffle等组件以及yarn平台与mapreduce编程模型的关系. mapreduce的简介和优点 mapreduce是一个分布式运算程序的编程框架,是hadoop数据分析的核心. mapreduce的核心思想是将用户编写的逻辑代码和架构中的各个组件整合成一个分布式运算程序,实现一定程序的并行处理海量数据,提高效率. 海量数据难以在单机上处理,而一旦将单机版程序扩展到集群上进行分…
Hadoop - MapReduce 一.MapReduce设计理念 map--->映射 reduce--->归纳 mapreduce必须构建在hdfs之上的一种大数据离线计算框架 在线:实时数据处理 离线:数据处理时效性没有在线那么强,但是相对也需要很快得到结果 mapreduce不会马上得到结果,他会有一定的延时(磁盘IO) 如果数据量小,使用mapreduce反而不合适 杀鸡焉用宰牛刀 原始数据-->map(Key,Value)-->Reduce 分布式i计算 将大的数据切分…
Hadoop 越来越火, 围绕Hadoop的子项目更是增长迅速, 光Apache官网上列出来的就十几个, 但是万变不离其宗, 大部分项目都是基于Hadoop common MapReduce 更是核心中的核心.那么到底什么是MapReduce, 它具体是怎么工作的呢? 关于它的原理, 说简单也简单, 随便画个图喷一下Map 和 Reduce两个阶段似乎就完了. 但其实这里面还包含了Sort, Partition, Shuffle, Combine, Merge等子阶段,尤其是Shuffle, 很…
我们都安装完Hadoop之后,按照一些案例先要跑一个WourdCount程序,来测试Hadoop安装是否成功.在终端中用命令创建一个文件夹,简单的向两个文件中各写入一段话,然后运行Hadoop,WourdCount自带WourdCount程序指令,就可以输出写入的那句话各个不同单词的个数.但是这不是这篇博客主要讲的内容,主要是想通过一个简单的Wordcount程序,来认识Hadoop的内部机制.并通过此来深入了解MapReduce的详细过程.在Thinking in BigDate(八)大数据H…
Reduce task启动后第一个阶段是shuffle,即向map端fetch数据.每次fetch都可能因为connect超时,read超时,checksum错误等原因而失败.Reduce task为每个map设置了一个计数器,用以记录fetch该map输出时失败的次数.当失败次数达到一定阈值时,会通知JobTracker fetch该map输出操作失败次数太多了,并打印如下log: Failed to fetch map-output from attempt_201105261254_102…
http://www.cnblogs.com/sharpxiajun/p/3151395.html 下面我从逻辑实体的角度讲解mapreduce运行机制,这些按照时间顺序包括:输入分片(input split).map阶段.combiner阶段.shuffle阶段和reduce阶段. 输入分片(input split):在进行map计算之前,mapreduce会根据输入文件计算输入分片(input split),每个输入分片(input split)针对一个map任务,输入分片(input sp…
http://blog.csdn.net/aijiudu/article/details/72353510 废话不说直接来一张图如下: 从JVM的角度看Map和Reduce Map阶段包括: 第一读数据:从HDFS读取数据 1.问题:读取数据产生多少个Mapper?? Mapper数据过大的话,会产生大量的小文件,由于Mapper是基于虚拟机的,过多的Mapper创建和初始化及关闭虚拟机都会消耗大量的硬件资源: Mapper数太小,并发度过小,Job执行时间过长,无法充分利用分布式硬件资源: 2…
转自: http://blog.csdn.net/yczws1/article/details/21794873 . 我们都安装完Hadoop之后,按照一些案例先要跑一个WourdCount程序,来测试Hadoop安装是否成功.在终端中用命令创建一个文件夹,简单的向两个文件中各写入一段话,然后运行Hadoop,WourdCount自带WourdCount程序指令,就可以输出写入的那句话各个不同单词的个数.但是这不是这篇博客主要讲的内容,主要是想通过一个简单的Wordcount程序,来认识Hado…