python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 模型调参 调参是一门黑箱技术,需要经验丰富的机器学习工程师才能做到.幸运的是sklearn有调参的包,入门级学者也可尝试调参.…
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share  模型验证 分类器好坏验证,模型建立好后,不是万事大吉,需要进行crossvalidation, AUC,GINi,KS,Ga…
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 乳腺癌细胞和正常细胞是有显著区别的 癌细胞半径更大,形状更加不规则,凹凸不平.我们可以用科学手段来区分正常细胞和癌细胞吗?答案…
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share sklearn编程环境搭建 (1)下载anaconda 首先下载anaconda,这款框架比Python官网的编辑器更好用,下…
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 前言 警钟长鸣!癌症离我们远吗?<我不是药神>催人泪下,笔者在此揭露真相,癌症不是小概率疾病,癌症就在身边.癌症早…
1.介绍 Ridge 回归通过对系数的大小施加惩罚来解决 普通最小二乘法 的一些问题. 岭系数最小化的是带罚项的残差平方和, 其中,α≥0α≥0 是控制系数收缩量的复杂性参数: αα 的值越大,收缩量越大,这样系数对共线性的鲁棒性也更强. 2.参数 alpha:{float,array-like},shape(n_targets) 正则化强度; 必须是正浮点数. 正则化改善了问题的条件并减少了估计的方差. 较大的值指定较强的正则化. Alpha对应于其他线性模型(如Logistic回归或Line…
3--朴素贝叶斯 原理 朴素贝叶斯本质上就是通过贝叶斯公式来对得到类别概率,但区别于通常的贝叶斯公式,朴素贝叶斯有一个默认条件,就是特征之间条件独立. 条件概率公式: \[P(B|A) = \frac{P(A|B)P(B)}{P(A)} \] 贝叶斯公式可以写成: \[p(y_i|x) = \frac{p(x|y_i)p(y_i)}{p(x)} \] 如果A和B相对于C是条件独立的,那么满足\(P(A|C) = P(A|B,C)\). 如果样本的两个特征\(x_1\)\(x_2\)相对于y条件独…
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常详细,同时许多人对官方文档的理解和结构上都不能很好地把握,我也打算好好学习sklearn,这可能是机器学习的神器),下面先简单介绍一下sklearn. 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归…
python机器学习实战(三) 版权声明:本文为博主原创文章,转载请指明转载地址 www.cnblogs.com/fydeblog/p/7364317.html 前言 这篇notebook是关于机器学习中logistic回归,内容包括基于logistic回归和sigmoid分类,基于最优化方法的最佳系数确定,从疝气病症预测病马的死亡率.操作系统:ubuntu14.04  运行环境:anaconda-python2.7-jupyter notebook 参考书籍:机器学习实战和源码   noteb…
分享一篇来自机器之心的文章.关于机器学习的起步,讲的还是很清楚的.原文链接在:只需十四步:从零开始掌握Python机器学习(附资源) Python 可以说是现在最流行的机器学习语言,而且你也能在网上找到大量的资源.你现在也在考虑从 Python 入门机器学习吗?本教程或许能帮你成功上手,从 0 到 1 掌握 Python 机器学习,至于后面再从 1 到 100 变成机器学习专家,就要看你自己的努力了.本教程原文分为两个部分,机器之心在本文中将其进行了整合,原文可参阅:suo.im/KUWgl 和…