题目大意 有一个\(1001\times n\)的的网格,每个格子有\(q\)的概率是安全的,\(1-q\)的概率是危险的. 定义一个矩形是合法的当且仅当: 这个矩形中每个格子都是安全的 必须紧贴网格的下边界 问你最大的合法子矩形大小为\(k\)的概率是多少. \(n\leq {10}^9,k\leq 1000\) 吉老师:这题本来是\(k\leq 20000\) 题解 一道好题. 我们计算最大子矩形不超过\(i\)的答案\(s_i\),那么答案就是\(s_k-s_{k-1}\). 显然最后一行…
[NOI2017]泳池 实在没有思路啊~~~ luogu题解 1.差分,转化成至多k的概率减去至多k-1的概率.这样就不用记录“有没有出现k”这个信息了 2.n是1e9,感觉要递推然后利用数列的加速技巧 f[n]表示宽度为n的值,然后枚举最后一个连续高度至少为1的块,dp数组辅助 神仙dp:dp[i][j]表示宽度为i,j的高度出现限制,任意矩形不大于k的概率 设计确实巧妙:宽度利于转移给f,高度利于自己的转移 dp数组转移:枚举第一个到达j的限制的位置,这样,前面部分限制至少是j+1,后面至少…
题意:有3个杯子,排放一行,刚开始钥匙在中间的杯子,每次操作,将左右两边任意一个杯子进行交换,问n次操作后钥匙在中间杯子的概率 分析:考虑动态规划做法,dp[i]代表i次操作后的,钥匙在中间的概率,由于每次操作独立,dp[i]=(1-dp[i-1)/2; 显然,dp[1]=0; 由刚才那个式子可以得出:dp[i]-1/3=(-1/2)*(dp[i-1]-1/3),这是高中数列知识 然后 设dp[i]=p/q; dp[i]=(2^(n-1)+(-1)^n)/(3*2^(n-1)) 它要求p/q是最…
题目分析: 用数论分块的思想,就会发现其实就是连续一段的长度$i$的高度不能超过$\lfloor \frac{k}{i} \rfloor$,然后我们会发现最长的非$0$一段不会超过$k$,所以我们可以弄一个长度为$i$的非$0$段的个数称为"元",然后用"元"去递推. 这个"元"的求法用DP:令数论分块之后第$i$段的长度为$g[i]$ $$f[i][j] = f[i-1][j] + f[i-1][k]*f[i][j-k-1]*g[i]$$ $$…
BZOJ4944: [Noi2017]泳池 题目背景 久莲是个爱玩的女孩子. 暑假终于到了,久莲决定请她的朋友们来游泳,她打算先在她家的私人海滩外圈一块长方形的海域作为游泳场. 然而大海里有着各种各样的危险,有些地方水太深,有些地方有带毒的水母出没. 她想让圈出来的这一块海域都是安全的. 题目描述 经过初步的分析,她把这块海域抽象成了一个底边长为 NN 米,高为 10011001 米的长方形网格. 其中网格的底边对应着她家的私人海滩,每一个 1*1 的小正方形都代表着一个单位海域. 她拜托了她爸…
传送门 Sol 考虑要求的东西的组合意义,问题转化为: 有 \(n\) 种小球,每种的大小为 \(a_i\),求选出大小总和为 \(m\) 的小球排成一排的排列数 有递推 \(f_i=\sum_{j=1}^{n}f_{i-a_j}\) 常系数线性递推 求一个满足 \(k\) 阶齐次线性递推数列 \(f_i\) 的第 \(n\) 项 \[f_n=\sum\limits_{i=1}^{k}a_i \times f_{n-i}\] 给出 \(a_1...a_k\) 以及 \(f_0\) \(k\) 为…
DP,递推,组合数 其实相当于就是一个递推推式子,然后要用到一点组合数的知识 一道很妙的题,因为不能互相攻击,所以任意行列不能有超过两个炮 首先令f[i][j][k]代表前i行,有j列为一个炮,有k列为两个炮的方案 那么有如下转移: 1,这行不放炮,add+=f[i-1][j][k]; 2,放一个炮,并且放在没有炮的那列 add+=f[i-1][j-1][k] * (m - j - k + 1);,因为放了这个炮后, 一个炮的变多了,也就是上一行的j+1得到这一行的j,所以上一行的j就是j-1,…
P4723 [模板]常系数齐次线性递推 题目描述 求一个满足$k$阶齐次线性递推数列${a_i}$的第$n$项. 即:$a_n=\sum\limits_{i=1}^{k}f_i \times a_{n-i}$ 输入输出格式 输入格式: 第一行两个数$n$,$k$,如题面所述. 第二行$k$个数,表示$f_1 \ f_2 \ \cdots \ f_k$ 第三行$k$个数,表示$a_0 \ a_1 \ \cdots \ a_{k-1}$ 输出格式: 一个数,表示 $a_n \% 998244353$…
UVa 926 题意:给定N*N的街道图和起始点,有些街道不能走,问从起点到终点有多少种走法. 很基础的dp.递推,但是有两个地方需要注意,在标记当前点某个方向不能走时,也要同时标记对应方向上的对应点.另一点就是要开long long存.要是不考虑障碍的话,按组合数算从(1,1)走到(n,n)需要2*n步,东.北方向各走n步,结果就是C(n/2,n),这个结果会很大!!! #include<iostream> #include<cstdio> #include<cstring…
原文链接www.cnblogs.com/zhouzhendong/p/Cayley-Hamilton.html Cayley-Hamilton定理与矩阵快速幂优化.常系数线性递推优化 引入 在开始本文之前,我们先用一个例题作为引入. 给定一个 \(n \times n\) 的矩阵 \(M\) , 求 \(M ^ k\) . \(n\leq 50, k\leq 10 ^ {50000}\) . 注意到 \(n\) 十分小,但是 $ \log k$ 非常大.如果使用传统的矩阵快速幂,时间复杂度为 \…