Elasticsearch之优化】的更多相关文章

一次 ElasticSearch 搜索优化 1. 环境 ES6.3.2,索引名称 user_v1,5个主分片,每个分片一个副本.分片基本都在11GB左右,GET _cat/shards/user 一共有3.4亿文档,主分片总共57GB. Segment信息:curl -X GET "221.228.105.140:9200/_cat/segments/user_v1?v" >> user_v1_segment user_v1索引一共有404个段: cat user_v1_s…
ElasticSearch性能优化主要分为4个方面的优化. 一.服务器部署 二.服务器配置 三.数据结构优化 四.运行期优化 一.服务器部署 1.增加1-2台服务器,用于负载均衡节点 elasticSearch的配置文件中有2个参数:node.master和node.data.这两个参 数搭配使用时,能够帮助提供服务器性能. 1.1> node.master: false    node.data: true 该node服务器只作为一个数据节点,只用于存储索引数据.使该node服务器功能 单一,…
前言 最近一年使用 Elasticsearch 完成亿级别日志搜索平台「ELK」,亿级别的分布式跟踪系统.在设计这些系统的过程中,底层都是采用 Elasticsearch 来做数据的存储,并且数据量都超过亿级别,甚至达到百亿级别. 所以趁着有空,就花点时间整理一下具体怎么做 Elasticsearch 性能优化,希望能对 Elasticsearch 感兴趣的同学有所帮助. 背景 Elasticsearch 是一个基于 Lucene 的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于…
1.内存优化 在bin/elasticsearch.in.sh中进行配置 修改配置项为尽量大的内存: ES_MIN_MEM=8g ES_MAX_MEM=8g 两者最好改成一样的,否则容易引发长时间GC(stop-the-world) elasticsearch默认使用的GC是CMS GC,如果你的内存大小超过6G,CMS是不给力的,容易出现stop-the-world,建议使用G1 GC JAVA_OPTS=”$JAVA_OPTS -XX:+UseParNewGC” JAVA_OPTS=”$JA…
#系统默认的最大打开文件数的限制 vi /etc/security/limits.conf   *     -       nproc          50240    *     -       nofile          20480 #65535   *                -       npro            20480 *                -       nofile          65535 *                -       …
1,Mac上安装(指定java8) brew cask install java8 vim .base_profile 文件内容: JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1..0_162.jdk/Contents/Home PATH=$JAVA_HOME/bin:$PATH CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar source .base_profile echo…
原文地址:https://qbox.io/blog/optimizing-elasticsearch-how-many-shards-per-index 大多数ElasticSearch用户在创建索引时通用会问的一个重要问题是:我需要创建多少个分片? 在本文中, 我将介绍在分片分配时的一些权衡以及不同设置带来的性能影响. 如果想搞清晰你的分片策略以及如何优化,请继续往下阅读. 为什么要考虑分片数 分片分配是个很重要的概念, 很多用户对如何分片都有所疑惑, 当然是为了让分配更合理. 在生产环境中,…
为什么es需要优化? 答: [root@master elasticsearch-2.4.0]# ulimit -a core file size (blocks, -c) 0 data seg size (kbytes, -d) unlimited scheduling priority (-e) 0 file size (blocks, -f) unlimited pending signals (-i) 6661 max locked memory (kbytes, -l) 64 max…
一.搜索效率优化 批量提交 当有大量数据提交的时候,建议采用批量提交. 比如在做 ELK 过程中 ,Logstash indexer 提交数据到 Elasticsearch 中 ,batch size 就可以作为一个优化功能点.但是优化 size 大小需要根据文档大小和服务器性能而定. 像 Logstash 中提交文档大小超过 20MB ,Logstash 会请一个批量请求切分为多个批量请求. 如果在提交过程中,遇到 EsRejectedExecutionException 异常的话,则说明集群…
https://blog.csdn.net/laoyang360/article/details/79253294 1.聚合为什么慢?大多数时候对单个字段的聚合查询还是非常快的, 但是当需要同时聚合多个字段时,就可能会产生大量的分组,最终结果就是占用 es 大量内存,从而导致 OOM 的情况发生. 实践应用发现,以下情况都会比较慢: 1)待聚合文档数比较多(千万.亿.十亿甚至更多): 2)聚合条件比较复杂(多重条件聚合): 3)全量聚合(翻页的场景用). 2.聚合优化方案探讨优化方案一:默认深度…