有标号的DAG图计数1~4】的更多相关文章

前言 我什么都不会,菜的被关了起来. 有标号的DAG图I Solution 考虑递推,设\(f_i\)表示i个点的答案,显然这个东西是可以组合数+容斥递推? 设\(f_i\)表示i个点的答案,我们考虑假设现在有j个点入度为1,那么可以选出的点就是一个组合数\(C_i^j\),边的可能性有两种,对应的就是\(2^{j*(i-j)}\),然后接着搞,肯定这样子算会有重复的,所以容斥一下然后和以前的答案乘起来就好了. \(f_i=\sum_{j=1}^{i}f_{i-j}*-1^{j-1}*C_i^j…
[合集]有标号的DAG图计数(合集) orz 1tst [题解]有标号的DAG计数1 [题解]有标号的DAG计数2 [题解]有标号的DAG计数3 [题解]有标号的DAG计数4…
COGS索引 一堆神仙容斥+多项式-- 有标号的DAG计数 I 考虑\(O(n^2)\)做法:设\(f_i\)表示总共有\(i\)个点的DAG数量,转移考虑枚举DAG上所有出度为\(0\)的点,剩下的点可以选择连向它,剩下的点之间也可以连边. 但是注意到这样子转移可能会存在剩下的点中有点没有出度的情况,考虑容斥解决:设枚举的出度为\(0\)的点的个数为\(i\)时的容斥系数为\(f_i\),那么一个实际上存在\(x\)个出度为\(0\)的点的DAG的贡献就是\(\sum\limits_{i=1}…
有标号的DAG计数系列 有标号的DAG计数I 题意 给定一正整数\(n\),对\(n\)个点有标号的有向无环图(可以不连通)进行计数,输出答案\(mod \ 10007\)的结果.\(n\le 5000\) 题解 显然是\(O(n^2)\)来做. 设\(f(i)\)表示\(i\)个点有标号的有向无环图的个数.而\(DAG\)中的特殊点显然只有两种,要么是出度为\(0\),要么入度为\(0\).随便枚举哪一种都行,这里枚举入度为\(0\)的点. 那么得到式子: \[f(n)=\sum_{i=1}^…
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图进行计数. 这里加一个限制:此图必须是弱连通图. 输出答案mod 998244353的结果 输入格式 一个正整数n. 输出格式 一个数,表示答案. 样例输入 3 样例输出 18 提示 对于第i个点 1<=n<=10000i. 题目分析 综合COGS2355 [HZOI 2015] 有标号的DAG计数 II与[2013集训胡渊鸣]城市规划. \(f(i)\)用前一题的方法求出,用后一题的方法推出\(g(i)\)即为答案. 代码实现 #in…
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 25 数据范围和约定 对于第i个点 1<=n<=10000*i 增大了数据范围. 题目分析 COGS2353 [HZOI2015]有标号的DAG计数 I升级版. 在这道题的基础上继续往下化: \[ \begin{split} f(n)&=\sum_{i=1}^n\frac {n!}{(n-…
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 10007的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 25 提示 对于20%的数据:n<=5 对于50%的数据:n<=500 对于100%的数据:1<=n<=5000 题目分析 设\(f(i)\)表示有\(i\)个点构成DAG图 设其中\(j\)个点出度为\(0\),则有: \[ f(i)=\sum_{j=1}^i\binom ij2^{(i-j…
[HZOI 2015] 有标号的DAG计数 I 设\(f_i\)为\(i\)个点时的DAG图,(不必联通) 考虑如何转移,由于一个DAG必然有至少一个出度为\(0\)的点,所以我们钦定多少个出度为\(0\)的点转移. 考虑如何保证没有环,钦定完出度为\(0\)的点后,这些点就等着被连接了.还剩下一些点,这些点只要不构成环就好了,就是个子结构,访问以前的DP数组就好了. \[ {i\choose j}2^{j\times (i-j)}dp_{i-j} \] 这样转移显然有方案重复的情况,因为如此计…
[HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然后答案\(h_i\)母函数\(H(x)\)就这样解 由于 \[ H(x)=\sum_{i=0}^{\inf} \dfrac {(F(x))^i} {i!} \] 则 \[ H(x)=e^{F(x)} \] 球\(\ln\)就好了 //@winlere #include<iostream> #inc…
[HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然后答案\(h_i\)母函数\(H(x)\)就这样解 由于 \[ H(x)=\sum_{i=0}^{\inf} \dfrac {(F(x))^i} {i!} \] 则 \[ H(x)=e^{F(x)} \] 球\(\ln\)就是IV,不求的话可以直接手动模拟\(F(x)^i/i!\) //@winl…