LM算法与非线性最小二乘问题】的更多相关文章

摘录的一篇有关求解非线性最小二乘问题的算法--LM算法的文章,当中也加入了一些我个人在求解高精度最小二乘问题时候的一些感触: LM算法,全称为Levenberg-Marquard算法,它可用于解决非线性最小二乘问题,多用于曲线拟合等场合. LM算法的实现并不算难,它的关键是用模型函数 f 对待估参数向量p在其邻域内做线性近似,忽略掉二阶以上的导数项,从而转化为线性最小二乘问题,它具有收敛速度快等优点.LM算法属于一种"信赖域法"--所谓的信赖域法,此处稍微解释一下:在最优化算法中,都是…
Levmar:Levenberg-Marquardt非线性最小二乘算法 eryar@163.com Abstract. Levmar is GPL native ANSI C implementations of the Levenberg-Marquardt optimization algorithm.The blog focus on the compilation of levmar on Windows with Visual Studio. Key Words. Levmar, C,…
最小二乘法的概念 最小二乘法的目标:求误差的最小平方和,对应有两种:线性和非线性. 线性最小二乘的解是closed-form即x=(A^T A)^{-1}A^Tb, 而非线性最小二乘没有closed-form,通常用迭代法求解. 最小二乘法的方法有 迭代法,即在每一步update未知量逐渐逼近解,可以用于各种各样的问题(包括最小二乘),比如求的不是误差的最小平方和而是最小立方和. 梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以) 高斯-牛顿法是另一种经常用于求解非线性最小二…
本篇博客为系列博客第二篇,主要介绍非线性最小二乘相关内容,线性最小二乘介绍请参见SLAM中的优化理论(一)-- 线性最小二乘.本篇博客期望通过下降法和信任区域法引出高斯牛顿和LM两种常用的非线性优化方法.博客中主要内容为: 非线性最小二乘介绍: 下降法相关理论(Desent Method); 信任区域理论(Trust Region Methods); 非线性最小二乘求解方法(高斯牛顿.LM) 由于个人水平有限,文中难免有解释不清晰的地方,因此希望大家结合着[1].[2]和[3]进行理解.如果在阅…
              1.前言                                a.对于工程问题,一般描述为:从一些测量值(观测量)x 中估计参数 p?即x = f(p),                              其中,x为测量值构成的向量,参数p为待求量,为了让模型能适应一般场景,这里p也为向量.                              这是一个函数求解问题,可以使用Guass-Newton法进行求解,LM算法是对Newton法的改进.…
主要内容: l1_ls的算法流程 l1_ls的MATLAB实现 一维信号的实验与结果 前言 前面所介绍的算法都是在匹配追踪算法MP基础上延伸的贪心算法,从本节开始,介绍基于凸优化的压缩感知重构算法. 约束的凸优化问题: 去约束的凸优化问题: 在压缩感知中,J函数和H函数的选择: 那么,后面要解决的问题就是如何通过最优化方法来求出x. 一.l1_ls的算法 l1_ls,全称ℓ1-regularized least squares,基于L1正则的最小二乘算法,在标准内点法的基础上,在truncate…
LINK :http://blog.sina.com.cn/s/blog_49f037d60100ok8y.html…
一.LM最优化算法     最优化是寻找使得目标函数有最大或最小值的的参数向量.根据求导数的方法,可分为2大类.(1)若f具有解析函数形式,知道x后求导数速度快.(2)使用数值差分来求导数.根据使用模型不同,分为非约束最优化.约束最优化.最小二乘最优化.Levenberg-Marquardt算法是最优化算法中的一种.    Levenberg-Marquardt算法是使用最广泛的非线性最小二乘算法(用模型函数 f 对待估参数向量p在其领域内做线性近似,利用泰勒展开,忽略掉二阶以上的导数项,优化目…
一.  Levenberg-Marquardt算法 (1)y=a*e.^(-b*x)形式拟合 clear all % 计算函数f的雅克比矩阵,是解析式 syms a b y x real; f=a*exp(-b*x); Jsym=jacobian(f,[a b]); % 拟合用数据.参见<数学试验>,p190,例2 % data_1=[0.25 0.5 1 1.5 2 3 4 6 8]; % obs_1=[19.21 18.15 15.36 18.10 12.89 9.32 7.45 5.24…