UVA - 11468:Substring】的更多相关文章

随机生成一个字符可以看成在AC自动机里面向前走一个节点,那么ans就是0向前走L步并且不经过单词节点, 由概率知识可得,f[p][L]=∑f[nxt[p][i]][L-1]*g[i] 其中p表示位于p节点,还要走L步,边界是f[p][0]=1.0,可以用记忆化搜索 非常巧妙的做法 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> #include<queue…
题目链接:uva 11468 - Substring 题目大意:给出一些字符和各自字符相应的选择概率.随机选择L次后得到一个长度为L的字符串,要求该字符串不包括随意一个子串的概率. 解题思路:构造AC自己主动机之后.每随机生成一个字母.等于是在AC自己主动机上走一步.全部子串的结束位置的节点标记为禁止通行.然后问题转换成记忆搜索处理. #include <cstdio> #include <cstring> #include <queue> #include <a…
AC自动机 UVa 11468 题意:给一些字符和各自出现的概率,在其中随机选择L次,形成长度为L的字符串S,给定K个模板串,求S不包含任意一个串的概率. 首先介绍改良版的AC自动机: 传统的AC自动机,是当一个字符失配时,根据失配函数转移到指定地方,而这个失配函数,是通过一个宽搜的过程形成的,这时在匹配串的时候,就当匹配失败时,顺着失配指针走,直到可以匹配.然后匹配到单词结点,或者后缀链接是一个单词结点,这些前面的结点也是匹配单词.这就是传统的AC自动机. 现在将这个AC自动机改版优化: 具体…
秒懂例子: substring('98765',-1,3) 结果:9 substring('98765',0,3) 结果:98 substring('98765',1,3) 结果:987 在操作sqlserver时候用到了substring函数 SUBSTRING ( expression, start, length ) 参数 expression 字符串.二进制字符串.文本.图像.列或包含列的表达式.请勿使用包含聚合函数的表达式. start 整数或可以隐式转换为 int 的表达式,指定子字…
图片加载可能有点慢,请跳过题面先看题解,谢谢 这个鬼题目,上一波套路好了 先用题目给的模板串建\(AC\)自动机,把单词结尾标记为 \(val=1\),然后在建好的\(AC\)自动机上跑 \(dp\), 设 \(f[x][L]\) 为:当前在 \(x\) 节点,剩下还要走 \(L\) 步并且不经过单词结尾的概率 那么有转移: \(f[x][L]=\sum_{!val[son[x][i]]}p[i]*dp(son[x][i],L-1)\),可以记忆搜实现 $ $ //made by Hero_of…
题目传送门 题意:训练指南P217 分析:没有模板串也就是在自动机上走L步,不走到val[u] == v的节点的概率 PS:边读边insert WA了,有毒啊! #include <bits/stdc++.h> using namespace std; const int K = 20 + 5; const int L = 100 + 5; const int NODE = K * K; const int SIZE = 66; int idx[256], n; struct AC { int…
题意:给你 k 个模板串,然后给你一些字符的出现概率,然后给你一个长度 l ,问你这些字符组成的长度为 l 的字符串不包含任何一个模板串的概率. 思路:AC自动机+概论DP 首先用K个模板构造好AC自动机.题目上说长L的新串的子串不包含任何一个K串,其实就是说在构造好的树中,从根往下走L步都不包含K个模板.此题用match标记是否为K模板串. 状态转移方程代码中注释了. #include<cstdio> #include<cstring> #include<queue>…
题意:给出一个字母表以及每个字母出现的概率.再给出一些模板串S.从字母表中每次随机拿出一个字母,一共拿L次组成一个产度为L的串, 问这个串不包含S中任何一个串的概率为多少? 析:先构造一个AC自动机,然后随机生成L个字母,就是在AC自动机的某个结点走多少步,dp[i][j] 表示在 i 结点,并且剩下 j 步, 然后记忆化搜索就OK了. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <…
传送门 题意: 给你K个模式串, 然后,再给你 n 个字符, 和它们出现的概率 p[ i ], 模式串肯定由给定的字符组成. 且所有字符,要么是数字,要么是大小写字母. 问你生成一个长度为L的串,不包含任何模式串的概率是多少. 解: 记忆化搜索 +  AC自动机. 对模式串建一个AC自动机, 不需要last[ ] 和 val[ ], 只需要一个 metch[ ]. 维护一下这个点是否是某个模式串的最后一个字符节点,若是,则这个点不能走. 然后, 剩下的就是从根节点,随便走 L 步, 记得要记忆化…
题意: 给出一些字符和各自对应的选择概率,随机选择L次后得到一个长度为L的随机字符串S. 给出K个模板串,计算S不包含任何一个模板串的概率 dp[i][j]表示走到AC自动机 i 这个节点 还需要走 j 步的概率. 表示不会概率DP ,看网上题解写的. 通过记忆化搜索去写. 注意一点字符有大小字母和数字 #include <set> #include <map> #include <stack> #include <queue> #include <c…