3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费di,限制网络流量不能改变.调整后必须满 流,设调整了K 次,使得费用减少量为D,最大化D/K 就是给你一个费用流,但不是最小,增广的费用为b+d,退流的费用为a-d 就是正反向增广路 根据消圈定理,流f为mcmf当且仅当无负费用增广圈 01分数规划+spfa求负环即可 #include <iost…
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 594  Solved: 360[Submit][Status][Discuss] Description Input 第一行包含二个整数N,M 接下来M行代表M条边,表示这个交通网络 每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di 接下来一行包含一条边,表示连接起点的边 Output 一个浮点数,保留二位小数.表示答案,数据保证答案大于0 Sampl…
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 144  Solved: 78[Submit][Status][Discuss] Description ................. Input 第一行包含二个整数N,M 接下来M行代表M条边,表示这个交通网络 每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di 接下来一行包含一条边,表示连接起点的边 Output 一个浮点数,保留二位小数.表示答…
题目传送门 传送门 题目大意 给定一个费用流,每条边有一个初始流量$c_i$和单位流量费用$d_i$,增加一条边的1单位的流量需要花费$b_i$的代价而减少一条边的1单位的流量需要花费$a_i$的代价.要求最小化总费用减少量和调整次数的比值(至少调整一次). 根据基本套路,二分答案,移项,可以得到每条边的贡献. 设第$i$条边的流量变化量为$m_i$,每次变化花费的平均费用为$w_i$.那么有 $\sum c_id_i - \sum (c_i + m_i)d_i + |m_i|(w_i + mi…
Description Input 第一行包含二个整数N,M 接下来M行代表M条边,表示这个交通网络 每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di 接下来一行包含一条边,表示连接起点的边 Output 一个浮点数,保留二位小数.表示答案,数据保证答案大于0 Sample Input 5 10 1 5 13 13 0 412 2 5 30 18 396 148 1 5 33 31 0 39 4 5 22 4 0 786 4 5 13 32 0 561 4 5 3 48 0 460 2 5…
即在总流量不变的情况下调整每条边的流量.显然先二分答案变为求最小费用.容易想到直接流量清空跑费用流,但复杂度略有些高. 首先需要知道(不知道也行?)一种平时基本不用的求最小费用流的算法——消圈法.算法基于下面的定理:如果残量网络中有负环,当前费用流一定不是最小费用流(似乎很显然?).注意到分数规划之后,我们需要知道的只是在调整边权后的网络里,最小费用流是否可能比原来更优,于是构造出残量网络,spfa判负环即可. #include<iostream> #include<cstdio>…
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MB Submit: 404  Solved: 249 [Submit][Status][Discuss] Description Input 第一行包含二个整数N,M 接下来M行代表M条边,表示这个交通网络 每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di 接下来一行包含一条边,表示连接起点的边 Output 一个浮点数,保留二位小数.表示答案,数据保证答案大于0 Sam…
[BZOJ3597]方伯伯运椰子(分数规划,网络流) 题解 给定了一个满流的费用流模型 如果要修改一条边,那么就必须满足流量平衡 也就是会修改一条某两点之间的路径上的所有边 同时还有另外一条路径会进行相反的修改 现在要求最大化\(\frac{X-Y}{K}\) 二分答案\(mid\) 式子变为\(X-Y-K·mid\geq 0\) 换而言之,相当于给每次修改操作额外付出一个代价\(mid\) 要使得费用+修改代价最小 对于扩容我们很好处理 对于每条边再额外连一条边 容量为\(inf\)(可以无限…
原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3597 Description 四川的方伯伯为了致富,决定引进海南的椰子树.方伯伯的椰子园十分现代化,椰子园中有一套独特的交通系统. 现在用点来表示交通节点,边来表示道路.这样,方伯伯的椰子园就可以看作一个有 n + 2 个交通节点,m条边的有向无环图.n +1 号点为入口,n +2 号点为出口.每条道路都有 6 个参数,ui,vi,ai,bi,ci,di,分别表示,该道路从 ui 号点通…
嘟嘟嘟 01分数规划思维题. 题中要求交通总量不减少,那么如果总量增加的话,总费用就会增加,所以一定不是更优的解.那么总量守恒. 这是不是就想到了网络流?对于每一个节点流入量等于流出量.然后就是很有思维的一个转化了:把压缩看成退流,把扩容看成增广. 边(x, y)一次压缩,就建一条y -> x,容量为a - d的边. 边(x, y)一次增广,就建一条x -> y,容量为b + d的边.也就是一次调整多出来的费用.那么这样建完图后,图中的一个环就代表一种调整方案! 回头看题,让求某一个比值最小,…