原博主博客地址:http://blog.csdn.net/qq21497936本文章博客地址:http://blog.csdn.net/qq21497936/article/details/78516201 qml学习笔记(二):可视化元素基类Item详解(上半场anchors等等) 本学章节笔记主要详解Item元素(上半场主要涉及anchors锚),因为所有可视化的界面元素都继承于Item,熟悉Item后,不同的继承子类,有其定制的属性(从几个到几十个不等). <Qt实用技巧:在Qt Gui程…
Ext.Net通过DirectEvents进行服务器端异步的事件处理.[Ext.Net学习笔记]02:Ext.Net用法概览.Ext.Net MessageBus用法.Ext.Net布局 中已经简单的介绍了DirectEvents,今天将详细的介绍一下DirectEvents. DirectEvents异步执行服务器端事件 我们首先来看一下Ext.Net DirectEvents的一个最简单用法,通过点击按钮触发服务器端的事件处理方法,并在前台弹出一个提示框. <ext:Window runat…
MVC 3 数据验证 Model Validation 详解  再附加一些比较好的验证详解:(以下均为引用) 1.asp.net mvc3 的数据验证(一) - zhangkai2237 - 博客园 2.asp.net mvc3 数据验证(二)——错误信息的自定义及其本地化 - zhangkai2237 - 博客园 3.asp.net mvc3 数据验证(三)—自定义数据注解 - zhangkai2237 - 博客园 在MVC 3中 数据验证,已经应用的非常普遍,我们在web form时代需要在…
本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱好者,互联网技术发烧友 微博:伊直都在0221 QQ:951226918 ---------------------------------…
原文:http://blog.csdn.net/yang_xian521/article/details/7107786 我记得开始接触OpenCV就是因为一个算法里面需要2维动态数组,那时候看core这部分也算是走马观花吧,随着使用的增多,对Mat这个结构越来越喜爱,也觉得有必要温故而知新,于是这次再看看Mat. Mat最大的优势跟STL很相似,都是对内存进行动态的管理,不需要之前用户手动的管理内存,对于一些大型的开发,有时候投入的lpImage内存管理的时间甚至比关注算法实现的时间还要多,这…
在笔记二中我们已经知道了,在highgui文件夹下的正是opencv图形用户接口功能结构,我们这篇博客所说的便是D:\Program Files\opencv340\opencv\build\include\opencv2\highgui\highgui.hpp中的函数了. 目录 [namedWindow] [destroyWindow] [destroyAllWindows] [startWindowThread] [waitKeyEx] [waitKey] [imshow] [resizeW…
直方图计算 直方图可以统计的不仅仅是颜色灰度, 它可以统计任何图像特征 (如 梯度, 方向等等).直方图的一些具体细节: dims: 需要统计的特征的数目, 在上例中, dims = 1 因为我们仅仅统计了灰度值(灰度图像). bins: 每个特征空间 子区段 的数目,在上例中, bins = 16 range: 每个特征空间的取值范围,在上例中, range = [0,255] 怎样去统计两个特征呢? 在这种情况下, 直方图就是3维的了,x轴和y轴分别代表一个特征, z轴是掉入  组合中的样本…
一,简介: OpenCV测试库,用于单元测试.…
一,简介 这个模块包含一系列的常用图像处理算法. 二,分析 此模块包含的文件如下图: 其导出算法包括如下: /*********************** Background statistics accumulation *****************************/ /* Adds image to accumulator */ CVAPI(void) cvAcc( const CvArr* image, CvArr* sum, const CvArr* mask CV_D…
图像平滑处理的几种常用方法: 均值滤波 归一化滤波 高斯模糊 中值滤波 平滑处理(模糊)的主要目的是去燥声: 不同的处理方式适合不同的噪声图像,其中高斯模糊最常用. 其实最重要的是对图像卷积的核的理解,核太大图像会失真,具体关于核的讲解点击传送门 图像噪声:引起较强视觉效果的孤立像素点或像素块.一般,噪声信号与要研究的对象不相关,它以无用的信息形式出现,扰乱图像的可观测信息.通俗的说就是噪声让图像不清楚. 废话不多说,直接上代码: #均值滤波 //像素点等于周围N*N像素的平均值 img = c…