首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
【洛谷 P3338】 [ZJOI2014]力(FFT)
】的更多相关文章
[洛谷P3338] [ZJOI2014]力
洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\frac{q_i q_j}{(i-j)^2 }\] 令Ei=Fi/qi,求Ei. 输入输出格式 输入格式: 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. 输出格式: n行,第i行输出Ei. 与标准答案误差不超过1e-2即可. 输入输出样例 输入样例#1: 5 4006373…
洛谷 P3338 [ZJOI2014]力 解题报告
P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\frac{q_i q_j}{(i-j)^2 }\) 令\(E_i=\frac{F_i}{q_i}\),求\(E_i\). 输入输出格式 输入格式: 第一行一个整数\(n\). 接下来\(n\)行每行输入一个数,第\(i\)行表示\(q_i\). 输出格式: \(n\)行,第\(i\)行输出\(E_i\).…
洛谷P3338 [ZJOI2014]力(FFT)
传送门 题目要求$$E_i=\frac{F_i}{q_i}=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(j-i)^2}$$ 令$x_i=\frac{1}{i^2}$,则有$$E_i=\sum_{j=1}^{i-1} q_j x_{i-j}-\sum_{j=i+1}^n q_j x_{j-i}$$ 令$p_i=q_{n-i+1}$,则有$$E_i=\sum_{j=1}^{i-1} q_j x_{i-j}-\sum_{j…
洛谷 P3338 [ZJOI2014]力
题意简述 读入\(n\)个数\(q_i\) 设\(F_j = \sum\limits_{i<j}\frac{q_i\times q_j}{(i-j)^2 }-\sum\limits_{i>j}\frac{q_i\times q_j}{(i-j)^2 }\) 令\(E_i=\frac{F_i}{q_i}\),求\(E_i\) 题解思路 先推式子 \(E_j=\frac{F_j}{q_j}=\sum\limits_{i<j}\frac{q_i}{(i-j)^2 }-\sum\limits_{…
[bzoj3527] [洛谷P3338] [Zjoi2014]力
Description 给出n个数qi,给出Fj的定义如下: \[ F_j=\sum\limits_{i<j} \frac{q_iq_j}{(i-j)^2} - \sum\limits_{i>j} \frac{q_iq_j}{(i-1)^2} \] 令Ei=Fi/qi,求Ei. Input 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<1000000000 Output n行,第i行输出Ei.与标准答案误差不超过1e-2即可. Samp…
P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略那部分,其他的直接按下标存下来,反正最后的答案是不变的 好了步入正题吧,我们定义 \[F_j=\sum\limits_{i<j}\dfrac{q_iq_j}{(i-j)^2}-\sum\limits_{i<j}\dfrac{q_iq_j}{(i-j)^2}\] 求\(E_i=\dfrac{F_i}…
P3338 [ZJOI2014]力 /// FFT 公式转化翻转
题目大意: https://www.luogu.org/problemnew/show/P3338 题解 #include <bits/stdc++.h> #define N 300005 #define PI acos(-1.0) using namespace std; struct cpx { double x,y; cpx (double a=0.0,double b=0.0) { x=a; y=b; } cpx operator - (const cpx &b)const {…
洛咕 P3338 [ZJOI2014]力
好久没写过博客了.. 大力推式子就行了: \(E_i=\sum_{j<i}\frac{q_j}{(i-j)^2}+\sum_{j>i}\frac{q_j}{(j-i)^2}\) 那么要转化成卷积的形式对吧,设\(f(i)=q_i,g(i)=\frac{1}{i^2}\) \(E_i=\sum_{j<i}f(j)g(i-j)+\sum_{j>i}f(j)g(j-i)\) 直接NTT就行了. #include<bits/stdc++.h> #define il inline…
[Luogu]P3338 [ZJOI2014]力(FFT)
题目描述 给出\(n\)个数\(q_i\),给出\(F_j\)的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\frac{q_i q_j}{(i-j)^2 }\) 令\(E_i=F_i/q_i\),求\(E_i\). 输入输出格式 输入格式: 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. 输出格式: n行,第i行输出Ei. 与标准答案误差不超过1e-2即可. 输入输出样例 输入样例#1: 复制 5 400…
【洛谷P3338】力
题目大意:求 \[ E_{j}=\sum_{i<j} \frac{q_{i}}{(i-j)^{2}}-\sum_{i>j} \frac{q_{i}}{(i-j)^{2}} \] 题解:可以发现,这个和式隐藏着卷积的形式,即:设 \(f(i)={1\over i^2}\),\(g(i)=q_i\),则以上和式可以表示成 \[\sum\limits_{i=0}^j g(i)f(j-i)\],\[\sum\limits_{i=j}^{n-1}g(i)f(i-j)\],令 \(f(0)=0\) 即可让…
[Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)
题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j}\frac{q_i*q_j}{(i-j)^2}\) \(q_j\)与\(i\)没有半毛钱关系,提到外面去 \(F_j=q_j*\sum_{i<j}\frac{q_i}{(i-j)^2}-q_j*\sum_{i>j}\frac{q_i}{(i-j)^2}\) 左右同时除以\(q_j\) \(E_j=…
bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i>j}\frac{q_i}{(i-j)^2}\) \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}\) \(\sum\limits _{i=1}^{j-1} q_i*\frac{1}{(j-i)^2}\) fft都能算出来 \(\sum\limits _{i=j+1}^{n…
【BZOJ】3527: [Zjoi2014]力 FFT
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)=qi,g(i)=1/i^2,定义f(0)=g(0)=0(方便卷积). Aj=Σf(i)*g(j-i),i=0~j-1,标准的卷积形式. 而对于Bj,将g反转后就是和为i+n-1的标准卷积形式了. 第一次FFT后,记得对a数组后半部分清零后再进行第二次FFT. 复杂度O(n log n). #incl…
【洛谷 P3338】 [ZJOI2014]力(FFT)
题目链接 \[\Huge{E_i=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^{n}\frac{q_j}{(i-j)^2}}\] 设\(A[i]=q[i]\),\(B[i]=\frac{1}{i^2}\),\(A\times B\)就能得到第一个\(\sum\),把\(A\)反过来再\(\times B\)就能得到第二个\(\sum\),相减即可. 用\(FFT\)算. #include <cstdio> #include <cmat…
洛谷P3338 力
题意: 解: 介绍两种方法. 首先可以把那个最后除的qi拆掉. ①分前后两部分处理. 前一部分可以看做是个卷积.下面的平方不拆开,直接看成gi-j即可. 后一部分按照套路,把循环变量改成从0开始,反转q,之后也是卷积. ②直接构造函数卷积. 题解. 我写的第一种. #include <cstdio> #include <algorithm> #include <cmath> ; const double pi = 3.1415926535897932384626; st…
洛谷 [P3338] 力
FFT \[E_i = F_i / q_i = \sum_{i<j} \frac {q_j} {(i - j)^2} - \sum _{ i > j} \frac{q _ j} {(i - j)^2}\] 设 \(p _ i = q_{n - i}\) \(g(i) = \frac 1 {i^2}\) 则 \(E_i = \sum_{j=1}^{i-1} q _ i g(j - i) - \sum _ {j = i + 1} ^ n q_j g(i - j)\) 即 \(E_i = \sum_…
【bzoj3527】[Zjoi2014]力 FFT
2016-06-01 21:36:44 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 我就是一个大傻叉 微笑脸 #include<bits/stdc++.h> #define inf 1000000000 #define ll long long #define N 500005 using namespace std; int read(){ ,f=;char ch=getchar(); ;ch=getchar();} +c…
BZOJ 3527: [Zjoi2014]力(FFT)
我们看一下这个函数,很容易就把他化为 E=sigma(aj/(i-j)/(i-j))(i>j)-sigma(aj/(i-j)/(i-j))(j>i) 把它拆成两半,可以发现分子与分母下标相加总为i 也就是说,例如左边, 可以表示成g(x)= f(i)*F(x-i) (i<x) 也就是卷积了 可以轻易的构造出 f(i)= ai F(i)=1/i/i FFT就行了 右边的话,吧f(i)给倒过来就行了 (f(i)=an-i) 最后的答案 ansi=g(i)-G(n-i-1) ok了 最近发现自…
luogu P3338 [ZJOI2014]力
传送门 首先化简原式\[F_j=\sum_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum_{i>j}\frac{q_iq_j}{(i-j)^2},E_j=F_j/q_j\] 把所有\(q_j\)提出来,则显然\[E_j=\sum_{i<j}\frac{q_i}{(i-j)^2}-\sum_{i>j}\frac{q_i}{(i-j)^2}\]\[E_j=...-\frac{q_{j-2}}{2^2}-\frac{q_{j-1}}{1^2}+0+\frac{q_{j+…
P3338 [ZJOI2014]力
思路 颓柿子的题目 要求求这样的一个式子 \[ F_j=\sum_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum_{i>j}\frac{q_iq_j}{(i-j)^2} \] 令\(E_i=\frac{F_i}{q_i}\),求所有的\(E_i\) 对于Ei,显然可以 \[ E_i=\sum_{j=0}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(i-j)^2} \] 前后没什么关联,可以分开考虑,首先考虑前面部分 \…
洛谷.4721.[模板]分治FFT(NTT)
题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg_{i-j}+\sum_{j=mid+1}^rf_jg_{i-j}\] 复杂度\(O(n\log^2n)\). 分治思路见:https://www.cnblogs.com/SovietPower/p/9366763.html 多项式求逆做法先坑着. //693ms 4.91MB #include <…
解题:洛谷4721 [模板]分治FFT
题面 这是CDQ入门题,不要被题目名骗了,这核心根本不在不在FFT上啊=.= 因为后面的项的计算依赖于前面的项,不能直接FFT.所以用CDQ的思想,算出前面然后考虑给后面的贡献 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ,mod=; *N],b[*N],rev[*N],f[N],g[N],n,G,Gi; void exGCD(int a,int b,int &a…
[ZJOI2014]力 FFT
题面 题解: \[F_j = \sum_{i < j}\frac{q_iq_j}{(i - j)^2} - \sum_{i > j}{\frac{q_iq_j}{(i - j)^2}}\] \[E_j = \sum_{i < j}\frac{q_i}{(i - j)^2} - \sum_{i > j}{\frac{q_i}{(i - j)^2}}\] 对式子的2个部分分别计算. 令\(S_i = i^2\) \[\sum_{i < j}\frac{q_i}{(i - j)^2…
bzoj 3527 [Zjoi2014]力——FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 把 q[ i ] 除掉.设 g[ i ] = i^2 ,有一半的式子就变成卷积了:另一半只要翻转一下序列就也变成卷积了. g[ i ] 那个部分FFT过一次之后就不用再FFT了. 注意别在主函数里把全局变量的 len 覆盖了. #include<iostream> #include<cstdio> #include<cstring> #include<…
bzoj 3527 [Zjoi2014] 力 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 看了看TJ才推出来式子,还是不够熟练啊: TJ:https://blog.csdn.net/qq_33929112/article/details/54590319 然后竟然想愚蠢地做 n 遍 FFT 呵呵...其实做一遍就够了,得到的数组的角标就是上限. 代码如下: #include<iostream> #include<cstdio> #include<cst…
BZOJ 3527 [Zjoi2014]力 ——FFT
[题目分析] FFT,构造数列进行卷积,挺裸的一道题目诶. 还是写起来并不顺手,再练. [代码] #include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define F(i,j,k) for (int i=j;i<=k;++i) #define D(i,j,k)…
[BZOJ3527][ZJOI2014]力 FFT+数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们可以把式子整理成这个样子再套上FFT就成功了. $$E_i=\sum_{j<i}\frac{q_j}{(j-i)^2}-\sum_{j>i}\frac{q_j}{(i-j)^2}$$ $$E_i=\sum_{j=0}^{i-1}\frac{q_j}{(j-i)^2}^2-\sum_{j=0}^{n…
[uoj#34] [洛谷P3803] 多项式乘法(FFT)
新技能--FFT. 可在 \(O(nlogn)\) 时间内完成多项式在系数表达与点值表达之间的转换. 其中最关键的一点便为单位复数根,有神奇的折半性质. 多项式乘法(即为卷积)的常见形式: \[ C_n=\sum\limits_{i=0}^n A_iB_{n-i} \] 基本思路为先将系数表达 -> 点值表达 \(O(nlogn)\) 随后点值 \(O(n)\) 进行乘法运算 最后将点值表达 -> 系数表达 \(O(nlogn)\) 代码 #include<cstdio> #inc…
BZOJ3527[Zjoi2014]力——FFT
题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<1000000000 输出 n行,第i行输出Ei.与标准答案误差不超过1e-2即可. 样例输入 5 4006373.885184 15375036.435759 1717456.469144 8514941.004912 1410681.345880 样例输出 -16838672.693 3439.793 7509018…
洛谷 P4721 [模板]分治FFT —— 分治FFT / 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以只做到 2*(r-l),能快一倍. 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long…